Brain metabolism dictates the polarity of astrocyte control over arterioles (original) (raw)
References
Mukamel, R. et al. Coupling between neuronal firing, field potentials, and FMRI in human auditory cortex. Science309, 951–954 (2005) ArticleADSCAS Google Scholar
Zonta, M. et al. Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nature Neurosci.6, 43–50 (2003) ArticleCAS Google Scholar
Schummers, J., Yu, H. & Sur, M. Tuned responses of astrocytes and their influence on hemodynamic signals in the visual cortex. Science320, 1638–1643 (2008) ArticleADSCAS Google Scholar
Simard, M., Arcuino, G., Takano, T., Liu, Q. S. & Nedergaard, M. Signaling at the gliovascular interface. J. Neurosci.23, 9254–9262 (2003) ArticleCAS Google Scholar
Mulligan, S. J. & MacVicar, B. A. Calcium transients in astrocyte endfeet cause cerebrovascular constrictions. Nature431, 195–199 (2004) ArticleADSCAS Google Scholar
Metea, M. R. & Newman, E. A. Glial cells dilate and constrict blood vessels: a mechanism of neurovascular coupling. J. Neurosci.26, 2862–2870 (2006) ArticleCAS Google Scholar
Chuquet, J., Hollender, L. & Nimchinsky, E. A. High-resolution in vivo imaging of the neurovascular unit during spreading depression. J. Neurosci.27, 4036–4044 (2007) ArticleCAS Google Scholar
Filosa, J. A., Bonev, A. D. & Nelson, M. T. Calcium dynamics in cortical astrocytes and arterioles during neurovascular coupling. Circ. Res.95, e73–e81 (2004) ArticleCAS Google Scholar
Takano, T. et al. Astrocyte-mediated control of cerebral blood flow. Nature Neurosci.9, 260–267 (2006) ArticleCAS Google Scholar
Filosa, J. A. et al. Local potassium signaling couples neuronal activity to vasodilation in the brain. Nature Neurosci.9, 1397–1403 (2006) ArticleCAS Google Scholar
Mintun, M. A., Vlassenko, A. G., Rundle, M. M. & Raichle, M. E. Increased lactate/pyruvate ratio augments blood flow in physiologically activated human brain. Proc. Natl Acad. Sci. USA101, 659–664 (2004) ArticleADSCAS Google Scholar
Ido, Y., Chang, K. & Williamson, J. R. NADH augments blood flow in physiologically activated retina and visual cortex. Proc. Natl Acad. Sci. USA101, 653–658 (2004) ArticleADSCAS Google Scholar
Vlassenko, A. G., Rundle, M. M., Raichle, M. E. & Mintun, M. A. Regulation of blood flow in activated human brain by cytosolic NADH/NAD+ ratio. Proc. Natl Acad. Sci. USA103, 1964–1969 (2006) ArticleADSCAS Google Scholar
Kasischke, K. A., Vishwasrao, H. D., Fisher, P. J., Zipfel, W. R. & Webb, W. W. Neural activity triggers neuronal oxidative metabolism followed by astrocytic glycolysis. Science305, 99–103 (2004) ArticleADSCAS Google Scholar
Vanzetta, I. & Grinvald, A. Increased cortical oxidative metabolism due to sensory stimulation: implications for functional brain imaging. Science286, 1555–1558 (1999) ArticleCAS Google Scholar
Ances, B. M., Buerk, D. G., Greenberg, J. H. & Detre, J. A. Temporal dynamics of the partial pressure of brain tissue oxygen during functional forepaw stimulation in rats. Neurosci. Lett.306, 106–110 (2001) ArticleCAS Google Scholar
Offenhauser, N., Thomsen, K., Caesar, K. & Lauritzen, M. Activity-induced tissue oxygenation changes in rat cerebellar cortex: interplay of postsynaptic activation and blood flow. J. Physiol.565, 279–294 (2005) ArticleCAS Google Scholar
Malonek, D. et al. Vascular imprints of neuronal activity: relationships between the dynamics of cortical blood flow, oxygenation, and volume changes following sensory stimulation. Proc. Natl Acad. Sci. USA94, 14826–14831 (1997) ArticleADSCAS Google Scholar
Devor, A. et al. Coupling of the cortical hemodynamic response to cortical and thalamic neuronal activity. Proc. Natl Acad. Sci. USA102, 3822–3827 (2005) ArticleADSCAS Google Scholar
Fox, P. T. & Raichle, M. E. Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc. Natl Acad. Sci. USA83, 1140–1144 (1986) ArticleADSCAS Google Scholar
Fox, P. T., Raichle, M. E., Mintun, M. A. & Dence, C. Nonoxidative glucose consumption during focal physiologic neural activity. Science241, 462–464 (1988) ArticleADSCAS Google Scholar
Hu, Y. & Wilson, G. S. A temporary local energy pool coupled to neuronal activity: fluctuations of extracellular lactate levels in rat brain monitored with rapid-response enzyme-based sensor. J. Neurochem.69, 1484–1490 (1997) ArticleCAS Google Scholar
Pellerin, L. & Magistretti, P. J. Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc. Natl Acad. Sci. USA91, 10625–10629 (1994) ArticleADSCAS Google Scholar
Hein, T. W., Xu, W. & Kuo, L. Dilation of retinal arterioles in response to lactate: role of nitric oxide, guanylyl cyclase, and ATP-sensitive potassium channels. Invest. Ophthalmol. Vis. Sci.47, 693–699 (2006) Article Google Scholar
Yamanishi, S., Katsumura, K., Kobayashi, T. & Puro, D. G. Extracellular lactate as a dynamic vasoactive signal in the rat retinal microvasculature. Am. J. Physiol. Heart Circ. Physiol.290, H925–H934 (2006) ArticleCAS Google Scholar
Devor, A. et al. Suppressed neuronal activity and concurrent arteriolar vasoconstriction may explain negative blood oxygenation level-dependent signal. J. Neurosci.27, 4452–4459 (2007) ArticleCAS Google Scholar
Ellis-Davies, G. C. Caged compounds: photorelease technology for control of cellular chemistry and physiology. Nature Methods4, 619–628 (2007) ArticleCAS Google Scholar
Chan, B. S., Endo, S., Kanai, N. & Schuster, V. L. Identification of lactate as a driving force for prostanoid transport by prostaglandin transporter PGT. Am. J. Physiol. Renal Physiol.282, F1097–F1102 (2002) ArticleCAS Google Scholar
Wender, R. et al. Astrocytic glycogen influences axon function and survival during glucose deprivation in central white matter. J. Neurosci.20, 6804–6810 (2000) ArticleCAS Google Scholar
Chance, B., Cohen, P., Jobsis, F. & Schoener, B. Intracellular oxidation-reduction states in vivo. Science137, 499–508 (1962) ArticleADSCAS Google Scholar
Nimmerjahn, A., Kirchhoff, F., Kerr, J. N. & Helmchen, F. Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo. Nature Methods1, 31–37 (2004) ArticleCAS Google Scholar
Frenguelli, B. G., Llaudet, E. & Dale, N. High-resolution real-time recording with microelectrode biosensors reveals novel aspects of adenosine release during hypoxia in rat hippocampal slices. J. Neurochem.86, 1506–1515 (2003) ArticleCAS Google Scholar
Brust, T. B., Cayabyab, F. S., Zhou, N. & MacVicar, B. A. p38 mitogen-activated protein kinase contributes to adenosine A1 receptor-mediated synaptic depression in area CA1 of the rat hippocampus. J. Neurosci.26, 12427–12438 (2006) ArticleCAS Google Scholar
Murphy, K. et al. Adenosine-A2a receptor down-regulates cerebral smooth muscle L-type Ca2+ channel activity via protein tyrosine phosphatase, not cAMP-dependent protein kinase. Mol. Pharmacol.64, 640–649 (2003) ArticleCAS Google Scholar
Chi, Y., Khersonsky, S. M., Chang, Y. T. & Schuster, V. L. Identification of a new class of prostaglandin transporter inhibitors and characterization of their biological effects on prostaglandin E2 transport. J. Pharmacol. Exp. Ther.316, 1346–1350 (2006) ArticleCAS Google Scholar
Chan, B. S., Satriano, J. A., Pucci, M. & Schuster, V. L. Mechanism of prostaglandin E2 transport across the plasma membrane of HeLa cells and Xenopus oocytes expressing the prostaglandin transporter ‘PGT’. J. Biol. Chem.273, 6689–6697 (1998) ArticleCAS Google Scholar
Fox, P. T. & Raichle, M. E. Stimulus rate dependence of regional cerebral blood flow in human striate cortex, demonstrated by positron emission tomography. J. Neurophysiol.51, 1109–1120 (1984) ArticleCAS Google Scholar
Kleinfeld, D., Mitra, P. P., Helmchen, F. & Denk, W. Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex. Proc. Natl Acad. Sci. USA95, 15741–15746 (1998) ArticleADSCAS Google Scholar
Chaigneau, E. et al. The relationship between blood flow and neuronal activity in the rodent olfactory bulb. J. Neurosci.27, 6452–6460 (2007) ArticleCAS Google Scholar
Cauli, B. et al. Cortical GABA interneurons in neurovascular coupling: relays for subcortical vasoactive pathways. J. Neurosci.24, 8940–8949 (2004) ArticleCAS Google Scholar
Peppiatt, C. M., Howarth, C., Mobbs, P. & Attwell, D. Bidirectional control of CNS capillary diameter by pericytes. Nature443, 700–704 (2006) ArticleADSCAS Google Scholar
D’Agostino, D. P., Putnam, R. W. & Dean, J. B. Superoxide (·O2-) production in CA1 neurons of rat hippocampal slices exposed to graded levels of oxygen. J. Neurophysiol.98, 1030–1041 (2007) Article Google Scholar
Xu, C., Zipfel, W., Shear, J. B., Williams, R. M. & Webb, W. W. Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy. Proc. Natl Acad. Sci. USA93, 10763–10768 (1996) ArticleADSCAS Google Scholar
Denk, W. Two-photon scanning photochemical microscopy: mapping ligand-gated ion channel distributions. Proc. Natl Acad. Sci. USA91, 6629–6633 (1994) ArticleADSCAS Google Scholar
Klaidman, L. K., Leung, A. C. & Adams, J. D. High-performance liquid chromatography analysis of oxidized and reduced pyridine dinucleotides in specific brain regions. Anal. Biochem.228, 312–317 (1995) ArticleCAS Google Scholar
Vishwasrao, H. D., Heikal, A. A., Kasischke, K. A. & Webb, W. W. Conformational dependence of intracellular NADH on metabolic state revealed by associated fluorescence anisotropy. J. Biol. Chem.280, 25119–25126 (2005) ArticleCAS Google Scholar
Sorg, O. & Magistretti, P. J. Characterization of the glycogenolysis elicited by vasoactive intestinal peptide, noradrenaline and adenosine in primary cultures of mouse cerebral cortical astrocytes. Brain Res.563, 227–233 (1991) ArticleCAS Google Scholar
Brown, A. M. & Ransom, B. R. Astrocyte glycogen and brain energy metabolism. Glia55, 1263–1271 (2007) Article Google Scholar
Ryu, J. K. et al. Microglial activation and cell death induced by the mitochondrial toxin 3-nitropropionic acid: in vitro and in vivo studies. Neurobiol. Dis.12, 121–132 (2003) ArticleCAS Google Scholar