Neuron-type-specific signals for reward and punishment in the ventral tegmental area (original) (raw)
References
Schultz, W., Dayan, P. & Montague, P. R. A neural substrate of prediction and reward. Science275, 1593–1599 (1997) ArticleCAS Google Scholar
Bayer, H. M. & Glimcher, P. W. Midbrain dopamine neurons encode a quantitative reward prediction error signal. Neuron47, 129–141 (2005) ArticleCAS Google Scholar
Schultz, W. Behavioral theories and the neurophysiology of reward. Annu. Rev. Psychol.57, 87–115 (2006) Article Google Scholar
Swanson, L. W. The projections of the ventral tegmental area and adjacent regions: a combined fluorescent retrograde tracer and immunofluorescence study in the rat. Brain Res. Bull.9, 321–353 (1982) ArticleCAS Google Scholar
Margolis, E. B., Lock, H., Hjelmstad, G. O. & Fields, H. L. The ventral tegmental area revisited: is there an electrophysiological marker for dopaminergic neurons? J. Physiol.577, 907–924 (2006) ArticleCAS Google Scholar
Nair-Roberts, R. G. et al. Stereological estimates of dopaminergic, GABAergic and glutamatergic neurons in the ventral tegmental area, substantia nigra and retrorubral field in the rat. Neuroscience152, 1024–1031 (2008) ArticleCAS Google Scholar
Hyman, S. E., Malenka, R. C. & Nestler, E. J. Neural mechanisms of addiction: the role of reward-related learning and memory. Annu. Rev. Neurosci.29, 565–598 (2006) ArticleCAS Google Scholar
Lüscher, C. & Malenka, R. C. Drug-evoked synaptic plasticity in addiction: from molecular changes to circuit remodeling. Neuron69, 650–663 (2011) Article Google Scholar
Johnson, S. W. & North, R. A. Opioids excite dopamine neurons by hyperpolarization of local interneurons. J. Neurosci.12, 483–488 (1992) ArticleCAS Google Scholar
Mansvelder, H. D., Keath, J. R. & McGehee, D. S. Synaptic mechanisms underlie nicotine-induced excitability of brain reward areas. Neuron33, 905–919 (2002) ArticleCAS Google Scholar
Szabo, B., Siemes, S. & Wallmichrath, I. Inhibition of GABAergic neurotransmission in the ventral tegmental area by cannabinoids. Eur. J. Neurosci.15, 2057–2061 (2002) Article Google Scholar
Tan, K. R. et al. Neural bases for addictive properties of benzodiazepines. Nature463, 769–774 (2010) ArticleADSCAS Google Scholar
Dobi, A., Margolis, E. B., Wang, H.-L., Harvey, B. K. & Morales, M. Glutamatergic and nonglutamatergic neurons of the ventral tegmental area establish local synaptic contacts with dopaminergic and nondopaminergic neurons. J. Neurosci.30, 218–229 (2010) ArticleCAS Google Scholar
Steffensen, S. C., Svingos, A. L., Pickel, V. M. & Henriksen, S. J. Electrophysiological characterization of GABAergic neurons in the ventral tegmental area. J. Neurosci.18, 8003–8015 (1998) ArticleCAS Google Scholar
Matsumoto, M. & Hikosaka, O. Two types of dopamine neuron distinctly convey positive and negative motivational signals. Nature459, 837–841 (2009) ArticleADSCAS Google Scholar
Lammel, S. et al. Unique properties of mesoprefrontal neurons within a dual mesocorticolimbic dopamine system. Neuron57, 760–773 (2008) ArticleCAS Google Scholar
Nagel, G. et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc. Natl Acad. Sci. USA100, 13940–13945 (2003) ArticleADSCAS Google Scholar
Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nature Neurosci.8, 1263–1268 (2005) ArticleCAS Google Scholar
Atasoy, D., Aponte, Y., Su, H. H. & Sternson, S. M. A. FLEX switch targets Channelrhodopsin-2 to multiple cell types for imaging and long-range circuit mapping. J. Neurosci.28, 7025–7030 (2008) ArticleCAS Google Scholar
Fiorillo, C. D., Newsome, W. T. & Schultz, W. The temporal precision of reward prediction in dopamine neurons. Nature Neurosci.11, 966–973 (2008) ArticleCAS Google Scholar
Takikawa, Y., Kawagoe, R. & Hikosaka, O. A possible role of midbrain dopamine neurons in short- and long-term adaptation of saccades to position-reward mapping. J. Neurophysiol.92, 2520–2529 (2004) Article Google Scholar
Rescorla, R. A. & Wagner, A. R. in Classical Conditioning II: Current Research and Theory (eds Black, A. H. & Wagner, A. R. ) 64–99 (New York, 1972) Google Scholar
Houk, J. C., Adams, J. L. & Barto, A. G. in Models of Information Processing in the Basal Ganglia (eds Houk, J. C., Davis, J. L. & Beiser, D. G. ) 249–270 (MIT Press, 1995) Google Scholar
Carr, D. B. & Sesack, S. R. Projections from the rat prefrontal cortex to the ventral tegmental area: target specificity in the synaptic associations with mesoaccumbens and mesocortical neurons. J. Neurosci.20, 3864–3873 (2000) ArticleCAS Google Scholar
Okada, K., Toyama, K., Inoue, Y., Isa, T. & Kobayashi, Y. Different pedunculopontine tegmental neurons signal predicted and actual task rewards. J. Neurosci.29, 4858–4870 (2009) ArticleCAS Google Scholar
Matsumoto, M. & Hikosaka, O. Lateral habenula as a source of negative reward signals in dopamine neurons. Nature447, 1111–1115 (2007) ArticleADSCAS Google Scholar
Takahashi, Y. K. et al. Expectancy-related changes in firing of dopamine neurons depend on orbitofrontal cortex. Nature Neurosci.14, 1590–1597 (2011) ArticleCAS Google Scholar
Omelchenko, N. & Sesack, S. R. Ultrastructural analysis of local collaterals of rat ventral tegmental area neurons: GABA phenotype and synapses onto dopamine and GABA cells. Synapse63, 895–906 (2009) ArticleCAS Google Scholar
Jhou, T. C., Fields, H. L., Baxter, M. G., Saper, C. B. & Holland, P. C. The rostromedial tegmental nucleus (RMTg), a GABAergic afferent to midbrain dopamine neurons, encodes aversive stimuli and inhibits motor responses. Neuron61, 786–800 (2009) ArticleCAS Google Scholar
Redish, A. D. Addiction as a computational process gone awry. Science306, 1944–1947 (2004) ArticleADSCAS Google Scholar
Bäckman, C. M. et al. Characterization of a mouse strain expressing Cre recombinase from the 3′ untranslated region of the dopamine transporter locus. Genesis44, 383–390 (2006) Article Google Scholar
Vong, L. et al. Leptin action on GABAergic neurons prevents obesity and reduces inhibitory tone to POMC neurons. Neuron71, 142–154 (2011) ArticleCAS Google Scholar
Tsai, H. C. et al. Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science324, 1080–1084 (2009) ArticleADSCAS Google Scholar
Uchida, N. & Mainen, Z. F. Speed and accuracy of olfactory discrimination in the rat. Nature Neurosci.6, 1224–1229 (2003) ArticleCAS Google Scholar
Lima, S. Q., Hromádka, T., Znamenskiy, P. & Zador, A. M. PINP: a new method of tagging neuronal populations for identification during in vivo electrophysiological recording. PLoS ONE4, e6099 (2009) ArticleADS Google Scholar
Zhao, S. et al. Cell-type specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function. Nature Methods8, 745–752 (2011) ArticleCAS Google Scholar
Thompson, K. G., Hanes, D. P., Bichot, N. P. & Schall, J. D. Perceptual and motor processing stages identified in the activity of macaque frontal eye field neurons during visual search. J. Neurophysiol.76, 4040–4055 (1996) ArticleCAS Google Scholar
Schmitzer-Torbert, N. & Redish, A. D. Neuronal activity in the rodent dorsal striatum in sequential navigation: separation of spatial and reward responses on the Multiple T Task. J. Neurophysiol.91, 2259–2272 (2004) Article Google Scholar