Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene (original) (raw)
Horie, T., Hauser, F. & Schroeder, J.I. HKT transporter-mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants. Trends Plant Sci.14, 660–668 (2009). ArticleCAS Google Scholar
Munns, R., James, R.A. & Läuchli, A. Approaches to increasing the salt tolerance of wheat and other cereals. J. Exp. Bot.57, 1025–1043 (2006). ArticleCAS Google Scholar
Dvořák, J., Noaman, M.M., Goyal, S. & Gorham, J. Enhancement of the salt tolerance of Triticum turgidum L. by the Kna1 locus transferred from the Triticum aestivum L. chromosome 4D by homoeologous recombination. Theor. Appl. Genet.87, 872–877 (1994). Article Google Scholar
Gorham, J., Wyn Jones, R.G. & Bristol, A. Partial characterisation of the trait for enhanced K+-Na+ discrimination in the D genome of wheat. Planta180, 590–597 (1990). ArticleCAS Google Scholar
James, R.A., Davenport, R.J. & Munns, R. Physiological characterisation of two genes for Na+ exclusion in durum wheat: Nax1 and Nax2. Plant Physiol.142, 1537–1547 (2006). ArticleCAS Google Scholar
Rengasamy, P. Soil processes affecting crop production in salt-affected soils. Funct. Plant Biol.37, 613–620 (2010). Article Google Scholar
Tilman, D., Balzer, C., Hill, J. & Belfort, B.L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA108, 20260–20264 (2011). ArticleCAS Google Scholar
Munns, R. & Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol.59, 651–681 (2008). ArticleCAS Google Scholar
Dubcovsky, J., María, G.S., Epstein, E., Luo, M.C. & Dvořák, J. Mapping of the K+/Na+ discrimination locus Kna1 in wheat. Theor. Appl. Genet.92, 448–454 (1996). ArticleCAS Google Scholar
Huang, S., Spielmeyer, W., Lagudah, E.S. & Munns, R. Comparative mapping of HKT genes in wheat, barley and rice, key determinants of Na+ transport and salt tolerance. J. Exp. Bot.59, 927–937 (2008). ArticleCAS Google Scholar
Davenport, R.J., James, R.A., Zakrisson-Plogander, A., Tester, M. & Munns, R. Control of sodium transport in durum wheat. Plant Physiol.137, 807–818 (2005). ArticleCAS Google Scholar
Byrt, C.S. et al. HKT1;5-like cation transporters linked to Na+ exclusion loci in wheat, Nax2 and Kna1. Plant Physiol.143, 1918–1928 (2007). ArticleCAS Google Scholar
Schachtman, D.P. & Schroeder, J.I. Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants. Nature370, 655–658 (1994). ArticleCAS Google Scholar
Maser, P. et al. Altered shoot/root Na+ distribution and bifurcating salt sensitivity in Arabidopsis by genetic disruption of the Na+ transporter AtHKT1. FEBS Lett.531, 157–161 (2002). ArticleCAS Google Scholar
Davenport, R.J. et al. The Na+ transporter AtHKT1;1 controls retrieval of Na+ from the xylem in Arabidopsis. Plant Cell Environ.30, 497–507 (2007). ArticleCAS Google Scholar
Møller, I.S. et al. Shoot Na+ exclusion and increased salinity tolerance engineered by cell type-specific alteration of Na+ transport in Arabidopsis. Plant Cell21, 2163–2178 (2009). Article Google Scholar
Ren, Z.H. et al. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat. Genet.37, 1141–1146 (2005). ArticleCAS Google Scholar
Plett, D. et al. Improved salinity tolerance of rice through cell type-specific expression of AtHKT1;1. PLoS ONE5, e12571 (2010). Article Google Scholar
Sunarpi et al. Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na+ unloading from xylem vessels to xylem parenchyma cells. Plant J.44, 928–938 (2005). ArticleCAS Google Scholar
Jabnoune, M. et al. Diversity in expression patterns and functional properties in the rice HKT transporter family. Plant Physiol.150, 1955–1971 (2009). ArticleCAS Google Scholar
Läuchli, A., James, R.A., Munns, R., Huang, C. & McCully, M. Cell-specific localization of Na+ in roots of durum wheat and possible control points for salt exclusion. Plant Cell Environ.31, 1565–1574 (2008). Article Google Scholar
Gassmann, W., Rubio, F. & Schroeder, J.I. Alkali cation selectivity of the wheat root high-affinity potassium transporter HKT1. Plant J.10, 869–882 (1996). ArticleCAS Google Scholar
Yao, X. et al. Differential sodium and potassium transport selectivities of the rice OsHKT2;1 and OsHKT2;2 transporters in plant cells. Plant Physiol.152, 341–355 (2010). ArticleCAS Google Scholar
Uozumi, N. et al. The Arabidopsis HKT1 gene homolog mediates inward Na+ currents in Xenopus laevis oocytes and Na+ uptake in Saccharomyces cerevisiae. Plant Physiol.122, 1249–1260 (2000). ArticleCAS Google Scholar
Yeo, A.R. & Flowers, T.J. Salinity resistance in rice (Oryza sativa L.) and a pyramiding approach to breeding varieties for saline soils. Aust. J. Plant Physiol.13, 161–173 (1986). Google Scholar
Schachtman, D.P., Munns, R. & Whitecross, M.I. Variation in sodium exclusion and salt tolerance in Triticum tauschii. Crop Sci.31, 992–997 (1991). ArticleCAS Google Scholar
Munns, R. & James, R.A. Screening methods for salinity tolerance: a case study with tetraploid wheat. Plant Soil253, 201–218 (2003). ArticleCAS Google Scholar
James, R.A. et al. Photosynthetic capacity is related to the cellular and subcellular partitioning of Na+, K+ and Cl− in salt-affected barley and durum wheat. Plant Cell Environ.29, 2185–2197 (2006). ArticleCAS Google Scholar
Richards, R.A. Should selection for yield in saline regions be made on saline or non-saline soils? Euphytica32, 431–438 (1983). Article Google Scholar
James, R.A., Blake, C., Byrt, C.S. & Munns, R. Major genes for Na+ exclusion Nax1 and Nax2 (wheat HKT1;4 and HKT1;5) decrease Na+ accumulation in bread wheat under saline and waterlogged conditions. J. Exp. Bot.62, 2939–2947 (2011). ArticleCAS Google Scholar
Rodríguez-Navarro, A. & Ramos, J. Dual system for potassium transport in Saccharomyces cerevisiae. J. Bacteriol.159, 940–945 (1984). PubMedPubMed Central Google Scholar
Molendijk, A.J. et al. A cysteine-rich receptor-like kinase NCRK and a pathogen-induced protein kinase RBK1 are Rop GTPase interactors. Plant J.53, 909–923 (2008). ArticleCAS Google Scholar
Gietz, R.D. & Schiestl, R.H. High efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat. Protoc.2, 31–34 (2007). ArticleCAS Google Scholar
Roy, S.J. et al. Investigating glutamate receptor-like gene co-expression in Arabidopsis thaliana. Plant Cell Environ.31, 861–871 (2008). ArticleCAS Google Scholar
Dick, D.A.T. & McLaughlin, S.G. The activities and concentration of sodium and potassium in toad oocytes. J. Physiol. (Lond.)205, 61–78 (1969). ArticleCAS Google Scholar
Conn, S.J. et al. Magnesium transporters, MGT2/MRS2-1 and MGT3/MRS2-5, are important for magnesium partitioning within Arabidopsis thaliana mesophyll vacuoles. New Phytol.190, 583–594 (2011). ArticleCAS Google Scholar
Gilliham, M., Athman, A., Tyerman, S.D. & Conn, S.J. Cell-specific compartmentation of mineral nutrients is an essential mechanism for optimal plant productivity; another role for TPC1? Plant Signal. Behav.6, 1656–1661 (2011). Article Google Scholar
Koltai, H. & Bird, D.M. High throughput cellular localization of specific plant mRNAs by liquid-phase in situ reverse transcription-polymerase chain reaction of tissue sections. Plant Physiol.123, 1203–1212 (2000). ArticleCAS Google Scholar