Finding DNA regulatory motifs within unaligned noncoding sequences clustered by whole-genome mRNA quantitation (original) (raw)

References

  1. Pennisi, E. 1997. Laboratory workhorse decoded. Science 277: 1432–1434.
    Article CAS Google Scholar
  2. Blattner, F.R., Plunkett, G., Bloch, C.A., Perna, N.T., Burland, V., Riley, M. et al. 1997. The complete genome sequence of Escherichla coli K-12. Science 277: 1453–1474.
    Article CAS Google Scholar
  3. Goffeau, A., Barrell, B.G., Bussey, H., Davis, R.W., Dujon, B., Feldman, H. et al. 1996. Life with 6000 genes. Science 274: 563–567.
    Article Google Scholar
  4. Chen, P., Ailion, M., Bobik, T., Stormo, G. and Roth, J. 1995. Five promoters integrate control of the cob/pdu regulon in Salmonella typhimurium. J. Bacteriol. 177: 5401–5410.
    Article CAS Google Scholar
  5. Chuang, S.E., Daniels, D.L. and Blattner, F.R. 1993. Global regulation of gene expression in Escherichia coli. J. Bacteriol. 175: 2026–2036.
    Article CAS Google Scholar
  6. Schena, M., Shalon, D., Davis, R.W. and Brown, P.O. 1995. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270: 467–470.
    Article CAS Google Scholar
  7. Lockhart, D.J., Dong, H.L., Byrne, M.C., Follettie, M.T., Gallo, M.V., Chee, M.S. et al. 1996. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat. Biotechnol. 14: 1675–1680.
    Article CAS Google Scholar
  8. DeRisi, J., Penland L., Brown, P.O., Bittner, M.L., Mertzer, P.S., Ray, M. et al. 1996. Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nat. Genet. 14: 457–460.
    Article CAS Google Scholar
  9. Wodicka L., Dong, H., Mittmann, M., Ho, M.-H., and Lockhart, D.J. 1997. Genome-wide expression monitoring in Saccharomyces cerevisiae. Nat Biotechnol. 15: 1359–1366.
    Article CAS Google Scholar
  10. Muhlrad, D., Decker, C.J. and Parker, R. 1995. Turnover mechanisms of the stable yeast PGK1 mRNA. Mol. Cell. Biol. 15: 2145–2156.
    Article CAS Google Scholar
  11. Jacobson, A. and Peltz, S.W. 1996. Interrelationships of the pathways of mRNA decay and translation in eukaryotic cells. Annu. Rev. Biochem. 65: 693–739.
    Article CAS Google Scholar
  12. Lipman, D.J. 1997. Making (anti)sense of non-coding sequence conservation. Nucleic Acids. Res. 25: 3580–3583.
    Article CAS Google Scholar
  13. Freeh, K., Quandt, K. and Werner, T. 1997. Software for the analysis of DNA sequence elements of transcription. CABIOS 13: 89–97.
    Google Scholar
  14. Bailey, T.L. and Elkan, C. 1995. Unsupervised learning of multiple motifs in biopolymers using expectation maximization. Machine Learning Journal 21: 51–83.
    Google Scholar
  15. Neuwald, A.F., Liu, J.S. and Lawrence, C.E. 1995. Gibbs motif sampling: detection of bacterial outer membrane protein repeats. Protein Sci. 4: 1618–1632.
    Article CAS Google Scholar
  16. Lawrence, C.E., Altschul, S.F., Boguski, M.S., Liu, J.S., Neuwald, A.F. and Wootton, J.C. 1993. Detecting subtle sequence signals: a Gibbs sampling strategy for multiple alignment. Science 262: 208–214.
    Article CAS Google Scholar
  17. Lohr, D., Venkov, P. and Zlatanova, J. 1995. Transcriptional regulation in the yeast GAL gene family: a complex genetic network. FASEB J. 9: 777–787.
    Article CAS Google Scholar
  18. Schneider, T.D. and Stephens, R.M. 1990. Sequence logos: a new way to display consensus sequences. Nucleic Acids Res. 18: 6097–6100.
    Article CAS Google Scholar
  19. Freeman, K.B., Karns, L.R., Lutz, K.A. and Smith, M.M. 1992. Histone H3 transcription in Saccharomyces cerevisiae is controlled by multiple cell cycle activation sites and a constitutive negative regulatory element. Mol. Cell. Biol. 12: 5455–5463.
    Article CAS Google Scholar
  20. Osley, M.A. 1991. The regulation of histone synthesis in the cell cycle. Annu. Rev. Biochem. 60: 827–861.
    Article CAS Google Scholar
  21. Breeden, L. 1996. Start-specific transcription in yeast. Curr. Top. Microbiol. Immunol. 208: 95–127.
    CAS PubMed Google Scholar
  22. Mclnerny, C.J., Partridge, J.F., Mikesell, G.E., Creemer, D.P. and Breeden, L.L. 1997. A novel Mcm1-dependent element in the SWI4, CLN3, CDC6, and CDC47 promoters activates M/G1 -specific transcription. Genes Dev. 11: 1277–1288.
    Article Google Scholar
  23. Herskowitz, I., Rine, J. and Strathern, J. 1992. Mating-type determination and mating-type interconversion in Saccharomyces cerevisiae, pp. 583–656, in Gene expression, Vol. 2. Jones, E.W., Pringle, J.R., and Broach, J.R. (eds.). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
    Google Scholar
  24. Johnston, M. and Carlson, M. 1992. Regulation of carbon and phosphate utilization, pp. 193–281 in Gene expression, Vol. 2. Jones, E.W., Pringle, J.R., and Broach, J.R. (eds.). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
    Google Scholar
  25. Craig, E.A. 1992. The heat-shock response of Saccharomyces cerevisiae , pp. 501–537, in Gene expression, Vol. 2. Jones, E.W., Pringle, J.R., and Broach, J.R. (eds.). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
    Google Scholar
  26. Schmitt, A.P. and McEntee, K., 1996. Msn2p, a zinc finger DNA-binding protein, is the transcriptional activator of the multistress response in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 93: 5777–5782.
    Article CAS Google Scholar
  27. Rowley, A., Johnston, G.C., Butler, B., Wemer-Washburne, M. and Singer, R.A. 1993. Heat shock-mediated cell cycle blockage and G1 cyclin expression in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 13: 1034–1041.
    Article CAS Google Scholar
  28. Vashee, S., Xu, H., Johnston, S.A. and Kodadek, T. 1993. How do “Zn2 cys6” proteins distinguish between similar upstream activation sites? Comparison of the DNA-binding specificity of the GAL4 protein in vitro and in vivo. J. Biol. Chem. 268: 24699–24706.
    CAS PubMed Google Scholar
  29. Cherry, J.M., Adler C., Ball, C., Chervitz, S.A., Dwight, S.S., Hester, E.T. et al. 1998. SGD: saccharomyces genome database. Nucleic Acids Res. 26: 73–79.
    Article CAS Google Scholar
  30. Ni, H.T. and LaPorte, D.C. 1995. Response of a yeast glycogen synthase gene to stress. Mol. Microbiol. 16: 1197–1205.
    Article CAS Google Scholar
  31. Sprague, G.F. and Thorner, J.W. 1992. Pheromone response and signal transduction during the mating process of Saccharomyces cerevisiae, pp. 657–744, in Gene expression, Vol. 2. Jones, E.W., Pringle, J.R., and Broach, J.R. (eds.). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
    Google Scholar
  32. Wen, X., Fuhrman, S., Michaels, G.S., Carr, D.B., Smith, S., Barker, J.L. et al. 1998. Large-scale temporal gene expression mapping of central nervous system development. Proc. Natl. Acad. Sci USA 95: 334–339.
    Article CAS Google Scholar
  33. Winston F., Dollard, C., and Ricupero-Hovasse, S.L. 1995. Construction of a set of convenient Saccharomyces cerevisiae strains that are isogenic to S288C. Yeast 11 53–55.
    Article CAS Google Scholar
  34. Goffeau, A., Barrell, B.G., Bussey, H., Davis, R.W., Dujon, B. et al. 1996. Life with 6000 genes. Science 274: 563–567.
    Article Google Scholar
  35. Miller, M.J., Xuong, N.H. and Geiduschek, E.P. 1982. Quantitative analysis of the heat shock response of Saccharomyces cerevisiae. J. Bacteriol. 151: 311–327.
    CAS PubMed PubMed Central Google Scholar
  36. Wenzel, T.J., Teunissen, A.W., and de Steensma, H.Y. 1995. PDA1 mRNA: a standard for quantitation of mRNA in Saccharomyces cerevisiae superior to ACT1 mRNA. Nucleic Acids Res. 23: 883–884.
    Article CAS Google Scholar
  37. Berg, O.G. and von Hippel, P.H. 1987. Selection of DNA binding sites by regulatory proteins. Statistical-mechanical theory and application to operators and promoters. J. Mol. Biol. 193: 723–750.
    Article CAS Google Scholar
  38. Liu, J.S., Neuwald, A.F, and Lawrence, C.E. 1995. Bayesian models for multiple local sequence alignment and Gibbs sampling strategies. J. Amen Stat Assoc. 90: 1156–1170.
    Article Google Scholar
  39. http://arep.med.harvard.edu/mrnadata
  40. Wingender, E., Kel, A.E., Kel, O.V., Karas, H., Heinemeyer, T. et al. 1997. TRANSFAC, TRRD and COMPEL: towards a federated database system on transcriptional regulation. Nucleic Acids Res. 25: 265–268.
    Article CAS Google Scholar
  41. Quandt, K., Frech, K., Karas, H., Wingender, E. and Werner, T. 1995. MatInd and matInspector: new fast and versatile tools for detection of consensus matches in nucleotide sequence data. Nucleic Acids Res. 23: 4878–4884.
    Article CAS Google Scholar
  42. Simon J.A. and Lis, J.T. 1987. A germline transformation analysis reveals flexibility in the organization of heat shock consensus elements. Nucleic Acids Res. 15: 5971–2988.
    Google Scholar
  43. Schuller C., Brewster, J.L., Alexander, M.R., Gustin, M.C., and Ruis, H. 1994. The HOG pathway controls osmotic regulation of transcription via the stress response element (STRE) of the Saccharomyces cerevisiae CTT1 gene. EMBO J. 13: 4382–4389.
    Article CAS Google Scholar
  44. Martinez-Pastor, M.T., Marchler, G., Schuller, C., Marchler-Bauer, A., Ruis, H. et al. 1996. The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). EMBO J. 15: 2227–2235.
    Article CAS Google Scholar
  45. Tavazoie, S. and Church, G.M. 1998. Quantitative whole-genome analysis of DNA-protein interactions by in vivo methylase protection in E. coli. Nat. Biotechnol. 16: 566–571.
    Article CAS Google Scholar

Download references