Sousa, M. M., Cardoso, I., Fernandes, R., Guimaraes, A. & Saraiva, M. J. Deposition of transthyretin in early stages of familial amyloidotic polyneuropathy: evidence for toxicity of nonfibrillar aggregates. Am. J. Pathol.159, 1993–2000 (2001). ArticleCAS Google Scholar
Ross, C. A. & Poirier, M. A. Protein aggregation and neurodegenerative disease. Nature Med.10, S10–17 (2004). Article Google Scholar
Bucciantini, M. et al. Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature416, 507–511 (2002). ArticleCAS Google Scholar
Yang, W., Dunlap, J. R., Andrews, R. B. & Wetzel, R. Aggregated polyglutamine peptides delivered to nuclei are toxic to mammalian cells. Hum. Mol. Genet.11, 2905–2917 (2002). ArticleCAS Google Scholar
Morten, I. J., Gosal, W. S., Radford, S. E. & Hewitt, E. W. Investigation into the role of macrophages in the formation and degradation of beta2-microglobulin amyloid fibrils. J. Biol. Chem.282, 29691–29700 (2007). ArticleCAS Google Scholar
Lee, H. J. et al. Assembly-dependent endocytosis and clearance of extracellular α-synuclein. Int. J. Biochem. Cell Biol.40, 1835–1849 (2008). ArticleCAS Google Scholar
Li, J. Y. et al. Lewy bodies in grafted neurons in subjects with Parkinson's disease suggest host-to-graft disease propagation. Nature Med.14, 501–503 (2008). ArticleCAS Google Scholar
Chen, S. & Wetzel, R. Solubilization and disaggregation of polyglutamine peptides. Protein Sci.10, 887–891 (2001). ArticleCAS Google Scholar
Chen, S., Berthelier, V., Hamilton, J. B., O'Nuallain, B. & Wetzel, R. Amyloid-like features of polyglutamine aggregates and their assembly kinetics. Biochemistry41, 7391–7399 (2002). ArticleCAS Google Scholar
Heuser, J. The production of 'cell cortices' for light and electron microscopy. Traffic1, 545–552 (2000). ArticleCAS Google Scholar
Jana, N. R., Tanaka, M., Wang, G. & Nukina, N. Polyglutamine length-dependent interaction of Hsp40 and Hsp70 family chaperones with truncated N-terminal huntingtin: their role in suppression of aggregation and cellular toxicity. Hum. Mol. Genet.9, 2009–2018 (2000). ArticleCAS Google Scholar
Cohen, F. E. Protein misfolding and prion diseases. J. Mol. Biol.293, 313–320 (1999). ArticleCAS Google Scholar
Santoso, A., Chien, P., Osherovich, L. Z. & Weissman, J. S. Molecular basis of a yeast prion species barrier. Cell100, 277–288 (2000). ArticleCAS Google Scholar
Rujano, M. A. et al. Polarised asymmetric inheritance of accumulated protein damage in higher eukaryotes. PLoS Biol.4, e417 (2006). Article Google Scholar
Kayed, R. et al. Permeabilization of lipid bilayers is a common conformation-dependent activity of soluble amyloid oligomers in protein misfolding diseases. J. Biol. Chem.279, 46363–46366 (2004). ArticleCAS Google Scholar
Porat, Y., Kolusheva, S., Jelinek, R. & Gazit, E. The human islet amyloid polypeptide forms transient membrane-active prefibrillar assemblies. Biochemistry42, 10971–10977 (2003). ArticleCAS Google Scholar
Khémtemourian, L., Killian, J. A., Hoppener, J. W. & Engel, M. F. Recent insights in islet amyloid polypeptide-induced membrane disruption and its role in β-cell death in type 2 diabetes mellitus. Exp. Diabetes Res.2008, 421287 (2008). Article Google Scholar
Chen, S., Berthelier, V., Yang, W. & Wetzel, R. Polyglutamine aggregation behavior in vitro supports a recruitment mechanism of cytotoxicity. J. Mol. Biol.311, 173–182 (2001). ArticleCAS Google Scholar
DePace, A. H., Santoso, A., Hillner, P. & Weissman, J. S. A critical role for amino-terminal glutamine/asparagine repeats in the formation and propagation of a yeast prion. Cell93, 1241–1252 (1998). ArticleCAS Google Scholar
Scherzinger, E. et al. Self-assembly of polyglutamine-containing huntingtin fragments into amyloid-like fibrils: implications for Huntington's disease pathology. Proc. Natl Acad. Sci. USA96, 4604–4609 (1999). ArticleCAS Google Scholar
Heuser, J. Three-dimensional visualization of coated vesicle formation in fibroblasts. J. Cell Biol.84, 560–583 (1980). ArticleCAS Google Scholar
Wanker, E. E. et al. Membrane filter assay for detection of amyloid-like polyglutamine- containing protein aggregates. Methods Enzymol.309, 375–386 (1999). ArticleCAS Google Scholar
Scherzinger, E. et al. Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo. Cell90, 549–558 (1997). ArticleCAS Google Scholar