Cytoplasmic penetration and persistent infection of mammalian cells by polyglutamine aggregates (original) (raw)

References

  1. Chiti, F. & Dobson, C. M. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75, 333–366 (2006).
    Article CAS Google Scholar
  2. Taylor, J. P., Hardy, J. & Fischbeck, K. H. Toxic proteins in neurodegenerative disease. Science 296, 1991–1995 (2002).
    Article CAS Google Scholar
  3. Carrell, R. W. & Lomas, D. A. Conformational disease. Lancet 350, 134–138 (1997).
    Article CAS Google Scholar
  4. Pepys, M. B. Amyloidosis. Annu. Rev. Med. 57, 223–241 (2006).
    Article CAS Google Scholar
  5. Sousa, M. M., Cardoso, I., Fernandes, R., Guimaraes, A. & Saraiva, M. J. Deposition of transthyretin in early stages of familial amyloidotic polyneuropathy: evidence for toxicity of nonfibrillar aggregates. Am. J. Pathol. 159, 1993–2000 (2001).
    Article CAS Google Scholar
  6. Ross, C. A. & Poirier, M. A. Protein aggregation and neurodegenerative disease. Nature Med. 10, S10–17 (2004).
    Article Google Scholar
  7. Bucciantini, M. et al. Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 416, 507–511 (2002).
    Article CAS Google Scholar
  8. Yang, W., Dunlap, J. R., Andrews, R. B. & Wetzel, R. Aggregated polyglutamine peptides delivered to nuclei are toxic to mammalian cells. Hum. Mol. Genet. 11, 2905–2917 (2002).
    Article CAS Google Scholar
  9. Morten, I. J., Gosal, W. S., Radford, S. E. & Hewitt, E. W. Investigation into the role of macrophages in the formation and degradation of beta2-microglobulin amyloid fibrils. J. Biol. Chem. 282, 29691–29700 (2007).
    Article CAS Google Scholar
  10. Lee, H. J. et al. Assembly-dependent endocytosis and clearance of extracellular α-synuclein. Int. J. Biochem. Cell Biol. 40, 1835–1849 (2008).
    Article CAS Google Scholar
  11. Li, J. Y. et al. Lewy bodies in grafted neurons in subjects with Parkinson's disease suggest host-to-graft disease propagation. Nature Med. 14, 501–503 (2008).
    Article CAS Google Scholar
  12. Chen, S. & Wetzel, R. Solubilization and disaggregation of polyglutamine peptides. Protein Sci. 10, 887–891 (2001).
    Article CAS Google Scholar
  13. Chen, S., Berthelier, V., Hamilton, J. B., O'Nuallain, B. & Wetzel, R. Amyloid-like features of polyglutamine aggregates and their assembly kinetics. Biochemistry 41, 7391–7399 (2002).
    Article CAS Google Scholar
  14. Heuser, J. The production of 'cell cortices' for light and electron microscopy. Traffic 1, 545–552 (2000).
    Article CAS Google Scholar
  15. Jana, N. R., Tanaka, M., Wang, G. & Nukina, N. Polyglutamine length-dependent interaction of Hsp40 and Hsp70 family chaperones with truncated N-terminal huntingtin: their role in suppression of aggregation and cellular toxicity. Hum. Mol. Genet. 9, 2009–2018 (2000).
    Article CAS Google Scholar
  16. Cohen, F. E. Protein misfolding and prion diseases. J. Mol. Biol. 293, 313–320 (1999).
    Article CAS Google Scholar
  17. Santoso, A., Chien, P., Osherovich, L. Z. & Weissman, J. S. Molecular basis of a yeast prion species barrier. Cell 100, 277–288 (2000).
    Article CAS Google Scholar
  18. Rujano, M. A. et al. Polarised asymmetric inheritance of accumulated protein damage in higher eukaryotes. PLoS Biol. 4, e417 (2006).
    Article Google Scholar
  19. Kayed, R. et al. Permeabilization of lipid bilayers is a common conformation-dependent activity of soluble amyloid oligomers in protein misfolding diseases. J. Biol. Chem. 279, 46363–46366 (2004).
    Article CAS Google Scholar
  20. Porat, Y., Kolusheva, S., Jelinek, R. & Gazit, E. The human islet amyloid polypeptide forms transient membrane-active prefibrillar assemblies. Biochemistry 42, 10971–10977 (2003).
    Article CAS Google Scholar
  21. Khémtemourian, L., Killian, J. A., Hoppener, J. W. & Engel, M. F. Recent insights in islet amyloid polypeptide-induced membrane disruption and its role in β-cell death in type 2 diabetes mellitus. Exp. Diabetes Res. 2008, 421287 (2008).
    Article Google Scholar
  22. Chen, S., Berthelier, V., Yang, W. & Wetzel, R. Polyglutamine aggregation behavior in vitro supports a recruitment mechanism of cytotoxicity. J. Mol. Biol. 311, 173–182 (2001).
    Article CAS Google Scholar
  23. DePace, A. H., Santoso, A., Hillner, P. & Weissman, J. S. A critical role for amino-terminal glutamine/asparagine repeats in the formation and propagation of a yeast prion. Cell 93, 1241–1252 (1998).
    Article CAS Google Scholar
  24. Scherzinger, E. et al. Self-assembly of polyglutamine-containing huntingtin fragments into amyloid-like fibrils: implications for Huntington's disease pathology. Proc. Natl Acad. Sci. USA 96, 4604–4609 (1999).
    Article CAS Google Scholar
  25. Heuser, J. Three-dimensional visualization of coated vesicle formation in fibroblasts. J. Cell Biol. 84, 560–583 (1980).
    Article CAS Google Scholar
  26. Wanker, E. E. et al. Membrane filter assay for detection of amyloid-like polyglutamine- containing protein aggregates. Methods Enzymol. 309, 375–386 (1999).
    Article CAS Google Scholar
  27. Scherzinger, E. et al. Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo. Cell 90, 549–558 (1997).
    Article CAS Google Scholar

Download references