A de novo gain-of-function mutation in SCN11A causes loss of pain perception (original) (raw)
Basbaum, A.I., Bautista, D.M., Scherrer, G. & Julius, D. Cellular and molecular mechanisms of pain. Cell139, 267–284 (2009). CASPubMedPubMed Central Google Scholar
Williams, F.M. et al. Genes contributing to pain sensitivity in the normal population: an exome sequencing study. PLoS Genet.8, e1003095 (2012). ArticlePubMedPubMed Central Google Scholar
Woolf, C.J. & Salter, M.W. Neuronal plasticity: increasing the gain in pain. Science288, 1765–1769 (2000). ArticleCASPubMed Google Scholar
Dib-Hajj, S.D., Cummins, T.R., Black, J.A. & Waxman, S.G. Sodium channels in normal and pathological pain. Annu. Rev. Neurosci.33, 325–347 (2010). ArticleCASPubMed Google Scholar
Kurth, I. et al. Mutations in FAM134B, encoding a newly identified Golgi protein, cause severe sensory and autonomic neuropathy. Nat. Genet.41, 1179–1181 (2009). ArticleCASPubMed Google Scholar
Rotthier, A., Baets, J., Timmerman, V. & Janssens, K. Mechanisms of disease in hereditary sensory and autonomic neuropathies. Nat. Rev. Neurol.8, 73–85 (2012). ArticleCASPubMed Google Scholar
Yuan, J. et al. Hereditary sensory and autonomic neuropathy type IID caused by an SCN9A mutation. Neurology80, 1641–1649 (2013). ArticleCASPubMed Google Scholar
Abecasis, G.R. et al. A map of human genome variation from population-scale sequencing. Nature467, 1061–1073 (2010). ArticlePubMed Google Scholar
Veltman, J.A. & Brunner, H.G. De novo mutations in human genetic disease. Nat. Rev. Genet.13, 565–575 (2012). ArticleCASPubMed Google Scholar
Cummins, T.R. et al. A novel persistent tetrodotoxin-resistant sodium current in SNS-null and wild-type small primary sensory neurons. J. Neurosci.19, RC43 (1999). ArticleCASPubMedPubMed Central Google Scholar
Amaya, F. et al. The voltage-gated sodium channel Nav1.9 is an effector of peripheral inflammatory pain hypersensitivity. J. Neurosci.26, 12852–12860 (2006). ArticleCASPubMedPubMed Central Google Scholar
Leo, S., D'Hooge, R. & Meert, T. Exploring the role of nociceptor-specific sodium channels in pain transmission using Nav1.8 and Nav1.9 knockout mice. Behav. Brain Res.208, 149–157 (2010). ArticleCASPubMed Google Scholar
Lolignier, S. et al. Nav1.9 channel contributes to mechanical and heat pain hypersensitivity induced by subacute and chronic inflammation. PLoS ONE6, e23083 (2011). ArticleCASPubMedPubMed Central Google Scholar
Maingret, F. et al. Inflammatory mediators increase Nav1.9 current and excitability in nociceptors through a coincident detection mechanism. J. Gen. Physiol.131, 211–225 (2008). ArticleCASPubMedPubMed Central Google Scholar
Östman, J.A., Nassar, M.A., Wood, J.N. & Baker, M.D. GTP up-regulated persistent Na+ current and enhanced nociceptor excitability require Nav1.9. J. Physiol. (Lond.)586, 1077–1087 (2008). Article Google Scholar
Priest, B.T. et al. Contribution of the tetrodotoxin-resistant voltage-gated sodium channel Nav1.9 to sensory transmission and nociceptive behavior. Proc. Natl. Acad. Sci. USA102, 9382–9387 (2005). ArticleCASPubMedPubMed Central Google Scholar
Herzog, R.I., Cummins, T.R. & Waxman, S.G. Persistent TTX-resistant Na+ current affects resting potential and response to depolarization in simulated spinal sensory neurons. J. Neurophysiol.86, 1351–1364 (2001). ArticleCASPubMed Google Scholar
Vanoye, C.G., Kunic, J.D., Ehring, G.R. & George, A.L. Jr. Mechanism of sodium channel Nav1.9 potentiation by G-protein signaling. J. Gen. Physiol.141, 193–202 (2013). ArticleCASPubMedPubMed Central Google Scholar
Catterall, W.A. From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron26, 13–25 (2000). ArticleCASPubMed Google Scholar
Payandeh, J., Scheuer, T., Zheng, N. & Catterall, W.A. The crystal structure of a voltage-gated sodium channel. Nature475, 353–358 (2011). ArticleCASPubMedPubMed Central Google Scholar
Huang, Z. et al. Presynaptic HCN1 channels regulate Cav3.2 activity and neurotransmission at select cortical synapses. Nat. Neurosci.14, 478–486 (2011). ArticleCASPubMedPubMed Central Google Scholar
Jacus, M.O., Uebele, V.N., Renger, J.J. & Todorovic, S.M. Presynaptic Cav3.2 channels regulate excitatory neurotransmission in nociceptive dorsal horn neurons. J. Neurosci.32, 9374–9382 (2012). ArticleCASPubMedPubMed Central Google Scholar
Cheng, X. et al. Deletion mutation of sodium channel Nav1.7 in inherited erythromelalgia: enhanced slow inactivation modulates dorsal root ganglion neuron hyperexcitability. Brain134, 1972–1986 (2011). ArticlePubMed Google Scholar
Dib-Hajj, S.D., Yang, Y., Black, J.A. & Waxman, S.G. The Nav1.7 sodium channel: from molecule to man. Nat. Rev. Neurosci.14, 49–62 (2013). ArticleCASPubMed Google Scholar
Fertleman, C.R. et al. SCN9A mutations in paroxysmal extreme pain disorder: allelic variants underlie distinct channel defects and phenotypes. Neuron52, 767–774 (2006). ArticleCASPubMed Google Scholar
Faber, C.G. et al. Gain of function Nav1.7 mutations in idiopathic small fiber neuropathy. Ann. Neurol.71, 26–39 (2012). ArticleCASPubMed Google Scholar
Subramanian, N. et al. Role of Nav1.9 in activity-dependent axon growth in motoneurons. Hum. Mol. Genet.21, 3655–3667 (2012). ArticleCASPubMed Google Scholar
Wetzel, A., Jablonka, S. & Blum, R. Cell-autonomous axon growth of young motoneurons is triggered by a voltage-gated sodium channel. Channels (Austin)7, 51–56 (2013). ArticleCAS Google Scholar
Copel, C., Clerc, N., Osorio, N., Delmas, P. & Mazet, B. The Nav1.9 channel regulates colonic motility in mice. Front. Neurosci.7, 58 (2013). ArticleCASPubMedPubMed Central Google Scholar
Rugiero, F. et al. Selective expression of a persistent tetrodotoxin-resistant Na+ current and Nav1.9 subunit in myenteric sensory neurons. J. Neurosci.23, 2715–2725 (2003). ArticleCASPubMedPubMed Central Google Scholar
Copel, C. et al. Activation of neurokinin 3 receptor increases Nav1.9 current in enteric neurons. J. Physiol. (Lond.)587, 1461–1479 (2009). ArticleCAS Google Scholar
Schröder, J.M., Hoheneck, M., Weis, J. & Deist, H. Ethylene oxide polyneuropathy: clinical follow-up study with morphometric and electron microscopic findings in a sural nerve biopsy. J. Neurol.232, 83–90 (1985). ArticlePubMed Google Scholar
Schwenk, F., Baron, U. & Rajewsky, K. A _cre_-transgenic mouse strain for the ubiquitous deletion of _lox_P-flanked gene segments including deletion in germ cells. Nucleic Acids Res.23, 5080–5081 (1995). ArticleCASPubMedPubMed Central Google Scholar
Ebbinghaus, M. et al. The anti-inflammatory effects of sympathectomy in murine antigen-induced arthritis are associated with a reduction of Th1 and Th17 responses. Ann. Rheum. Dis.71, 253–261 (2012). ArticleCASPubMed Google Scholar
Richter, F. et al. Interleukin-17 sensitizes joint nociceptors to mechanical stimuli and contributes to arthritic pain through neuronal interleukin-17 receptors in rodents. Arthritis Rheum.64, 4125–4134 (2012). ArticleCASPubMed Google Scholar
Blum, R., Kafitz, K.W. & Konnerth, A. Neurotrophin-evoked depolarization requires the sodium channel Nav1.9. Nature419, 687–693 (2002). ArticleCASPubMed Google Scholar
Dib-Hajj, S.D. et al. Transfection of rat or mouse neurons by biolistics or electroporation. Nat. Protoc.4, 1118–1126 (2009). ArticleCASPubMed Google Scholar
Sinning, A. et al. Synaptic glutamate release is modulated by the Na+-driven Cl−/HCO3− exchanger Slc4a8. J. Neurosci.31, 7300–7311 (2011). ArticleCASPubMedPubMed Central Google Scholar