Cadmium is a mutagen that acts by inhibiting mismatch repair (original) (raw)
References
Schaaper, R.M. Base selection, proofreading, and mismatch repair during DNA replication in Escherichia coli. J. Biol. Chem.268, 23762–23765 (1993). CASPubMed Google Scholar
Morrison, A., Johnston, A.L., Johnston, L.H. & Sugino, A. Pathway correcting DNA replication errors in S. cerevisiae. EMBO J.12, 1467–1473 (1993). ArticleCAS Google Scholar
Harfe, B.D. & Jinks-Robertson, S. DNA mismatch repair and genetic instability. Annu. Rev. Genet.34, 359–399 (2000). ArticleCAS Google Scholar
Peltomaki, P. Deficient DNA mismatch repair: a common etiologic factor for colon cancer. Hum. Mol. Genet.10, 735–740 (2001). ArticleCAS Google Scholar
Cadmium. in IARC Monographs on the Evaluation of Carcinogenic Risks to Humans 119–237 (IARC, Lyon, France, 1993).
Gordenin, D.A. & Resnick, M.A. Yeast ARMs (DNA at-risk motifs) can reveal sources of genome instability. Mutat. Res.400, 45–58 (1998). ArticleCAS Google Scholar
Marsischky, G.T., Filosi, N., Kane, M.F. & Kolodner, R. Redundancy of Saccharomyces cerevisiae MSH3 and MSH6 in _MSH2_-dependent mismatch repair. Genes Dev.10, 407–420 (1996). ArticleCAS Google Scholar
Tran, H.T., Keen, J.D., Kricker, M., Resnick, M.A. & Gordenin, D.A. Hypermutability of homonucleotide runs in mismatch repair and DNA polymerase proofreading yeast mutants. Mol. Cell. Biol.17, 2859–2865 (1997). ArticleCAS Google Scholar
Tran, H.T., Gordenin, D.A. & Resnick, M.A. The 3′→5′ exonucleases of DNA polymerase δ and ε and the 5′→3′ exonuclease Exo1 have major roles in postreplication mutation avoidance in Saccharomyces cerevisiae. Mol. Cell. Biol.19, 2000–2007 (1999). ArticleCAS Google Scholar
Drotschmann, K., Clark, A.B. & Kunkel, T.A. Mutator phenotypes of common polymorphisms and missense mutations in MSH2. Curr. Biol.9, 907–910 (1999). ArticleCAS Google Scholar
Coleman, W.B. & Tsongalis, G.J. The role of genomic instability in human carcinogenesis. Anticancer Res.19, 4645–4664 (1999). CASPubMed Google Scholar
Kroutil, L.C., Register, K., Bebenek, K. & Kunkel, T.A. Exonucleolytic proofreading during replication of repetitive DNA. Biochemistry35, 1046–1053 (1996). ArticleCAS Google Scholar
Sirover, M.A. & Loeb, L.A. Infidelity of DNA synthesis in vitro: screening for potential metal mutagens or carcinogens. Science194, 1434–1436 (1976). ArticleCAS Google Scholar
Karthikeyan, G., Lewis, L.K. & Resnick, M.A. The mitochondrial protein frataxin prevents nuclear damage. Hum. Mol. Genet.11, 1351–1362 (2002). ArticleCAS Google Scholar
Fauchon, M. et al. Sulfur sparing in the yeast proteome in response to sulfur demand. Mol. Cell9, 713–723 (2002). ArticleCAS Google Scholar
Gary, R. et al. A novel role in DNA metabolism for the binding of Fen1/Rad27 to PCNA and implications for genetic risk. Mol. Cell. Biol.19, 5373–5382 (1999). ArticleCAS Google Scholar
Hubscher, U., Maga, G. & Spadari, S. Eukaryotic DNA polymerases. Annu. Rev. Biochem.71, 133–163 (2002). ArticleCAS Google Scholar
Morrison, A. & Sugino, A. The 3′→5′ exonucleases of both DNA polymerase δ and ε participate in correcting errors of DNA replication in S. cerevisiae. Mol. Gen. Genet.242, 289–296 (1994). ArticleCAS Google Scholar
Umar, A. et al. Requirement for PCNA in DNA mismatch repair at a step preceding DNA resynthesis. Cell87, 65–73 (1996). ArticleCAS Google Scholar
Waalkes, M.P. & Misra, R.R. Cadmium carcinogenicity and genotoxicity. in Toxicology of Metals (ed. Chang, L.W.) 231–243 (CRC, Boca Raton, 1996). Google Scholar
Beyersmann, D. & Hechtenberg, S. Cadmium, gene regulation, and cellular signalling in mammalian cells. Toxicol. Appl. Pharmacol.144, 247–261 (1997). ArticleCAS Google Scholar
Hartwig, A. Zinc finger proteins as potential targets for toxic metal ions: differential effects on structure and function. Antioxid. Redox. Signal.3, 625–634 (2001). ArticleCAS Google Scholar
Elinder, C.G. Normal values for cadmium in human tissues, blood, and urine in different countries. in Cadmium and Health: A Toxicological and Epidemiological Appraisal (eds. Friberg, L., Elinder, C.G., Kjellstrom, T. & Nordberg, G.F.) 81–102 (CRC, Boca Raton, 1985). Google Scholar
Mao, L. et al. Microsatellite alterations as clonal markers for the detection of human cancer. Proc. Natl. Acad. Sci. USA91, 9871–9875 (1994). ArticleCAS Google Scholar
Leach, F.S. Microsatellite instability and prostate cancer: clinical and pathological implications. Curr. Opin. Urol.12, 407–411 (2002). Article Google Scholar
Giraud, A. et al. Costs and benefits of high mutation rates: adaptive evolution of bacteria in the mouse gut. Science291, 2606–2608 (2001). ArticleCAS Google Scholar
Khromov-Borisov, N.N., Saffi, J. & Henriques, J.A.P. Perfect order plating: principle and applications. Technical Tips Online1, t02638 (2002). Google Scholar
Harfe, B.D. & Jinks-Robertson, S. Sequence composition and context effects on the generation and repair of frameshift intermediates in mononucleotide runs in Saccharomyces cerevisiae. Genetics156, 571–578 (2000). CASPubMedPubMed Central Google Scholar
Jin, Y.H. et al. The 3→5′ exonuclease of DNA polymerase δ can substitute for the 5′ flap endonuclease Rad27/Fen1 in processing Okazaki fragments and preventing genome instability. Proc. Natl. Acad. Sci. USA98, 5122–5127 (2001). ArticleCAS Google Scholar