Cadmium is a mutagen that acts by inhibiting mismatch repair (original) (raw)

References

  1. Schaaper, R.M. Base selection, proofreading, and mismatch repair during DNA replication in Escherichia coli. J. Biol. Chem. 268, 23762–23765 (1993).
    CAS PubMed Google Scholar
  2. Morrison, A., Johnston, A.L., Johnston, L.H. & Sugino, A. Pathway correcting DNA replication errors in S. cerevisiae. EMBO J. 12, 1467–1473 (1993).
    Article CAS Google Scholar
  3. Harfe, B.D. & Jinks-Robertson, S. DNA mismatch repair and genetic instability. Annu. Rev. Genet. 34, 359–399 (2000).
    Article CAS Google Scholar
  4. Peltomaki, P. Deficient DNA mismatch repair: a common etiologic factor for colon cancer. Hum. Mol. Genet. 10, 735–740 (2001).
    Article CAS Google Scholar
  5. Cadmium. in IARC Monographs on the Evaluation of Carcinogenic Risks to Humans 119–237 (IARC, Lyon, France, 1993).
  6. Gordenin, D.A. & Resnick, M.A. Yeast ARMs (DNA at-risk motifs) can reveal sources of genome instability. Mutat. Res. 400, 45–58 (1998).
    Article CAS Google Scholar
  7. Marsischky, G.T., Filosi, N., Kane, M.F. & Kolodner, R. Redundancy of Saccharomyces cerevisiae MSH3 and MSH6 in _MSH2_-dependent mismatch repair. Genes Dev. 10, 407–420 (1996).
    Article CAS Google Scholar
  8. Tran, H.T., Keen, J.D., Kricker, M., Resnick, M.A. & Gordenin, D.A. Hypermutability of homonucleotide runs in mismatch repair and DNA polymerase proofreading yeast mutants. Mol. Cell. Biol. 17, 2859–2865 (1997).
    Article CAS Google Scholar
  9. Tran, H.T., Gordenin, D.A. & Resnick, M.A. The 3′→5′ exonucleases of DNA polymerase δ and ε and the 5′→3′ exonuclease Exo1 have major roles in postreplication mutation avoidance in Saccharomyces cerevisiae. Mol. Cell. Biol. 19, 2000–2007 (1999).
    Article CAS Google Scholar
  10. Drotschmann, K., Clark, A.B. & Kunkel, T.A. Mutator phenotypes of common polymorphisms and missense mutations in MSH2. Curr. Biol. 9, 907–910 (1999).
    Article CAS Google Scholar
  11. Coleman, W.B. & Tsongalis, G.J. The role of genomic instability in human carcinogenesis. Anticancer Res. 19, 4645–4664 (1999).
    CAS PubMed Google Scholar
  12. Kroutil, L.C., Register, K., Bebenek, K. & Kunkel, T.A. Exonucleolytic proofreading during replication of repetitive DNA. Biochemistry 35, 1046–1053 (1996).
    Article CAS Google Scholar
  13. Sirover, M.A. & Loeb, L.A. Infidelity of DNA synthesis in vitro: screening for potential metal mutagens or carcinogens. Science 194, 1434–1436 (1976).
    Article CAS Google Scholar
  14. Karthikeyan, G., Lewis, L.K. & Resnick, M.A. The mitochondrial protein frataxin prevents nuclear damage. Hum. Mol. Genet. 11, 1351–1362 (2002).
    Article CAS Google Scholar
  15. Fauchon, M. et al. Sulfur sparing in the yeast proteome in response to sulfur demand. Mol. Cell 9, 713–723 (2002).
    Article CAS Google Scholar
  16. Gary, R. et al. A novel role in DNA metabolism for the binding of Fen1/Rad27 to PCNA and implications for genetic risk. Mol. Cell. Biol. 19, 5373–5382 (1999).
    Article CAS Google Scholar
  17. Hubscher, U., Maga, G. & Spadari, S. Eukaryotic DNA polymerases. Annu. Rev. Biochem. 71, 133–163 (2002).
    Article CAS Google Scholar
  18. Morrison, A. & Sugino, A. The 3′→5′ exonucleases of both DNA polymerase δ and ε participate in correcting errors of DNA replication in S. cerevisiae. Mol. Gen. Genet. 242, 289–296 (1994).
    Article CAS Google Scholar
  19. Umar, A. et al. Requirement for PCNA in DNA mismatch repair at a step preceding DNA resynthesis. Cell 87, 65–73 (1996).
    Article CAS Google Scholar
  20. Waalkes, M.P. & Misra, R.R. Cadmium carcinogenicity and genotoxicity. in Toxicology of Metals (ed. Chang, L.W.) 231–243 (CRC, Boca Raton, 1996).
    Google Scholar
  21. Beyersmann, D. & Hechtenberg, S. Cadmium, gene regulation, and cellular signalling in mammalian cells. Toxicol. Appl. Pharmacol. 144, 247–261 (1997).
    Article CAS Google Scholar
  22. Hartwig, A. Zinc finger proteins as potential targets for toxic metal ions: differential effects on structure and function. Antioxid. Redox. Signal. 3, 625–634 (2001).
    Article CAS Google Scholar
  23. Elinder, C.G. Normal values for cadmium in human tissues, blood, and urine in different countries. in Cadmium and Health: A Toxicological and Epidemiological Appraisal (eds. Friberg, L., Elinder, C.G., Kjellstrom, T. & Nordberg, G.F.) 81–102 (CRC, Boca Raton, 1985).
    Google Scholar
  24. Mao, L. et al. Microsatellite alterations as clonal markers for the detection of human cancer. Proc. Natl. Acad. Sci. USA 91, 9871–9875 (1994).
    Article CAS Google Scholar
  25. Leach, F.S. Microsatellite instability and prostate cancer: clinical and pathological implications. Curr. Opin. Urol. 12, 407–411 (2002).
    Article Google Scholar
  26. Giraud, A. et al. Costs and benefits of high mutation rates: adaptive evolution of bacteria in the mouse gut. Science 291, 2606–2608 (2001).
    Article CAS Google Scholar
  27. Khromov-Borisov, N.N., Saffi, J. & Henriques, J.A.P. Perfect order plating: principle and applications. Technical Tips Online 1, t02638 (2002).
    Google Scholar
  28. Harfe, B.D. & Jinks-Robertson, S. Sequence composition and context effects on the generation and repair of frameshift intermediates in mononucleotide runs in Saccharomyces cerevisiae. Genetics 156, 571–578 (2000).
    CAS PubMed PubMed Central Google Scholar
  29. Jin, Y.H. et al. The 3→5′ exonuclease of DNA polymerase δ can substitute for the 5′ flap endonuclease Rad27/Fen1 in processing Okazaki fragments and preventing genome instability. Proc. Natl. Acad. Sci. USA 98, 5122–5127 (2001).
    Article CAS Google Scholar

Download references