Prevention of diabetes by manipulation of anti-IGRP autoimmunity: high efficiency of a low-affinity peptide (original) (raw)
Wraith, D.C., Smilek, D.E., Mitchell, D.J., Steinman, L. & McDevitt, H.O. Antigen recognition in autoimmune encephalomyelitis and the potential for peptide-mediated immunotherapy. Cell59, 247–255 (1989). ArticleCAS Google Scholar
Metzler, B. & Wraith, D. Inhibition of experimental autoimmune encephalomyelitis by inhalation but not oral administration of the encephalitogenic peptide: influence of MHC binding affinity. Int. Immunol.5, 1159–1165 (1993). ArticleCAS Google Scholar
Liu, G. & Wraith, D. Affinity for class II MHC determines the extent to which soluble peptides tolerize autoreactive T cells in naive and primed adult mice–implications for autoimmunity. Int. Immunol.7, 1255–1263 (1995). ArticleCAS Google Scholar
Anderton, S. & Wraith, D. Hierarchy in the ability of T cell epitopes to induce peripheral tolerance to antigens from myelin. Eur. J. Immunol.28, 1251–1261 (1998). ArticleCAS Google Scholar
Karin, N., Mitchell, D., Brocke, S., Ling, N. & Steinman, L. Reversal of experimental autoimmune encephalomyelitis by a soluble peptide variant of a myelin basic protein epitope: T cell receptor antagonism and reduction of interferon γ and tumor necrosis factor α production. J. Exp. Med.180, 2227–2237 (1994). ArticleCAS Google Scholar
Weiner, H. Double-blind pilot trial of oral tolerization with myelin antigens in multiple sclerosis. Science259, 1321–1324 (1993). ArticleCAS Google Scholar
Trentham, D. et al. Effects of oral administration of type II collagen on rheumatoid arthritis. Science261, 1727–1730 (1993). ArticleCAS Google Scholar
McKown, K. et al. Lack of efficacy of oral bovine type II collagen added to existing therapy in rheumatoid arthritis. Arthritis Rheum.42, 1204–1208 (1999). ArticleCAS Google Scholar
Pozzilli, P. et al. No effect of oral iinsulin on residual beta-cell function in recent-onset type 1 diabetes (the IMDIAB VII). IMDIAB Group. Diabetologia43, 1000–1004 (2000). ArticleCAS Google Scholar
Group. D.P.T.-T.D.S. Effects of insulin in relatives of patients with type 1 diabetes mellitus. N. Engl. J. Med.346, 1685–1691 (2002).
Kappos, L. et al. Induction of a non-encephalitogenic type 2 T helper-cell autoimmune response in multiple sclerosis after administration of an altered peptide ligand in a placebo-controlled, randomized phase II trial. Nat. Med.6, 1176–1182 (2000). ArticleCAS Google Scholar
Bielekova, B. et al. Encephalitogenic potential of the myelin basic protein peptide (amino acids 83–99) in multiple sclerosis: results of a phase II clinical trial with an altered peptide ligand. Nat. Med.6, 1167–1175 (2000). ArticleCAS Google Scholar
Amrani, A. et al. Progression of autoimmune diabetes driven by avidity maturation of a T-cell population. Nature406, 739–742 (2000). ArticleCAS Google Scholar
Santamaria, P. Effector lymphocytes in autoimmunity. Curr. Opin. Immunol.13, 663–669 (2001). ArticleCAS Google Scholar
Liblau, R., Wong, S., Mars, L. & Santamaria, P. Autoreactive CD8+ T-cells in organ-specific autoimmunity: emerging targets for therapeutic intervention. Immunity17, 1–6 (2002). ArticleCAS Google Scholar
Lieberman, S. & DiLorenzo, T. A comprehensive guide to antibody and T-cell responses in type 1 diabetes. Tissue Antigens62, 359–377 (2003). ArticleCAS Google Scholar
Santamaria, P. et al. β-cell-cytotoxic CD8+ T cells from nonobese diabetic mice use highly homologous T cell receptor α-chain CDR3 sequences. J. Immunol.154, 2494–2503 (1995). CASPubMed Google Scholar
Verdaguer, J. et al. Acceleration of spontaneous diabetes in TCR-β-transgenic nonobese diabetic mice by β-cell cytotoxic CD8+ T cells expressing identical endogenous TCR-α chains. J. Immunol.157, 4726–4735 (1996). CASPubMed Google Scholar
Verdaguer, J. et al. Spontaneous autoimmune diabetes in monoclonal T cell nonobese diabetic mice. J. Exp. Med.186, 1663–1676 (1997). ArticleCAS Google Scholar
DiLorenzo, T. et al. Major histocompatibility complex class I-restricted T cells are required for all but the end stages oof diabetes development in nonobese diabetic mice and a use prevalent T cell receptor alpha chain gene rearrangement. Proc. Natl Acad. Sci. USA95, 12538–12543 (1998). ArticleCAS Google Scholar
Anderson, B., Park, B.J., Verdaguer, J., Amrani, A. & Santamaria, P. Prevalent CD8+ T cell response against one peptide/MHC complex in autoimmune diabetes. Proc. Natl Acad. Sci. USA96, 9311–9316 (1999). ArticleCAS Google Scholar
Amrani, A. et al. Expansion of the antigenic repertoire of a single T cell receptor upon T cell activation. J. Immunol.167, 655–666 (2001). ArticleCAS Google Scholar
Lieberman, S. et al. Identity of the beta cell antigen targeted by a prevalent population of pathogenic CD8+ T cells in autoimmune diabetes. Proc. Natl Acad. Sci. USA100, 8384–8388 (2003). ArticleCAS Google Scholar
Trudeau, J.D. et al. Prediction of spontaneous autoimmune diabetes in NOD mice by quantification of autoreactive T cells in peripheral blood. J. Clin. Invest.111, 217–223 (2003). ArticleCAS Google Scholar
Martin, C. et al. Cloning and characterization of the human and rat islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP) genes. J. Biol. Chem.276, 25197–25204 (2001). ArticleCAS Google Scholar
Pociot, F. & McDermott, M. Genetics of type 1 diabetes mellitus. Genes Immun.3, 235–249 (2002). ArticleCAS Google Scholar
Aichele, P. et al. Peptide-induced T-cell tolerance to prevent autoimmune diabetes in a transgenic mouse model. Proc. Natl Acad. Sci. USA91, 444–448 (1994). ArticleCAS Google Scholar
Toes, R., Offringa, R., Blom, R., Melief, C. & Kast, W. Peptide vaccination can lead to enhanced tumor growth through specific T-cell tolerance induction. Proc. Natl Acad. Sci. USA93, 7855–7860 (1996). ArticleCAS Google Scholar
Wong, F.S. et al. Identification of an MHC class I-restricted autoantigen in type 1 diabetes by screening an organ-specific cDNA library. Nat. Med.9, 1026–1031 (1999). Article Google Scholar
Metzler, B., Anderton, S., Manickasingham, S. & Wraith, D. Kinetics of peptide uptake and tissue distribution following a single intranasal dose of peptide. Immunol. Invest.29, 61–70 (2000). ArticleCAS Google Scholar
Alexander-Miller, M., Leggatt, G. & Berzofsky, J. Selective expansion of high- or low-avidity cytotoxic T-lymphocytes and efficacy for adoptive immunotherapy. Proc. Natl Acad. Sci. USA93, 4102–4107 (1996). ArticleCAS Google Scholar
Perez-Diez, A., Spiess, P., Restifo, N., Matzinger, P. & Marincola, F. Intensity of the vaccine-elicited immune response determines tumor clearance. J. Immunol.168, 338–347 (2002). ArticleCAS Google Scholar
Zeh, H., Perry-Lalley, D., Dudley, M., Rosenberg, S. & Yang, J. High avidity CTLS for two self-antigens demonstrate superior in vitro and in vivo anti-tumor efficacy. J. Immunol.162, 989–994 (1999). CASPubMed Google Scholar
Arif, S. et al. Autoreactive T cell responses show proinflammatory polarization in diabetes but a regulatory phenotype in health. J. Clin. Invest.113, 451–463 (2004). ArticleCAS Google Scholar
Nicholson, L.B., Greer, J.M., Sobel, R.A., Lees, M.B. & Kuchroo, V.K. An altered peptide ligand mediates immune deviation and prevents autoimmune encephalomyelitis. Immunity3, 397–405 (1995). ArticleCAS Google Scholar
Gross, D.A. et al. High vaccination efficiency of low-affinity epitopes in antitumor immunotherapy. J. Clin. Invest.113, 425–433 (2004). ArticleCAS Google Scholar