Computational prediction of neural progenitor cell fates (original) (raw)
References
Cayouette, M., Poggi, L. & Harris, W.A. Lineage in the vertebrate retina. Trends Neurosci.29, 563–570 (2006). ArticleCAS Google Scholar
Cayouette, M., Barres, B.A. & Raff, M. Importance of intrinsic mechanisms in cell fate decisions in the developing rat retina. Neuron40, 897–904 (2003). ArticleCAS Google Scholar
Godinho, L. et al. Nonapical symmetric divisions underlie horizontal cell layer formation in the developing retina in vivo. Neuron56, 597–603 (2007). ArticleCAS Google Scholar
Mu, X. et al. Ganglion cells are required for normal progenitor-cell proliferation but not cell-fate determination or patterning in the developing mouse retina. Curr. Biol.15, 525–530 (2005). ArticleCAS Google Scholar
Poggi, L., Vitorino, M., Masai, I. & Harris, W.A. Influences on neural lineage and mode of division in the zebrafish retina in vivo. J. Cell Biol.171, 991–999 (2005). ArticleCAS Google Scholar
Diaz, E. et al. Analysis of gene expression in the developing mouse retina. Proc. Natl. Acad. Sci. USA100, 5491–5496 (2003). ArticleCAS Google Scholar
Dorrell, M.I., Aguilar, E., Weber, C. & Friedlander, M. Global gene expression analysis of the developing postnatal mouse retina. Invest. Ophthalmol. Vis. Sci.45, 1009–1019 (2004). Article Google Scholar
Livesey, F.J., Young, T.L. & Cepko, C.L. An analysis of the gene expression program of mammalian neural progenitor cells. Proc. Natl. Acad. Sci. USA101, 1374–1379 (2004). ArticleCAS Google Scholar
Mu, X. et al. Gene expression in the developing mouse retina by EST sequencing and microarray analysis. Nucleic Acids Res.29, 4983–4993 (2001). Article Google Scholar
Tietjen, I. et al. Single-cell transcriptional analysis of neuronal progenitors. Neuron38, 161–175 (2003). ArticleCAS Google Scholar
Jessell, T.M. Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat. Rev. Genet.1, 20–29 (2000). ArticleCAS Google Scholar
Cohen, A.R., Bjornsson, C.S., Temple, S., Banker, G. & Roysam, B. Automatic summarization of changes in biological image sequences using algorithmic information theory. IEEE Trans. Pattern Anal. Mach. Intell.31, 1386–1403 (2009). Article Google Scholar
Kamvar, S.D., Klein, D. & Manning, C.D. Spectral learning. International Joint Conference of Artificial Intelligence (2003).
Baye, L.M. & Link, B. Interkinetic nuclear migration and the selection of neurogenic cell divisions during vertebrate retinogenesis. J. Neurosci.27, 10143–10152 (2007). ArticleCAS Google Scholar
Cilibrasi, R. & Vitanyi, P.M.B. Clustering by compression. IEEE Trans. Inf. Theory51, 1523–1545 (2005). Article Google Scholar
Witten, I.H. & Frank, E. Data Mining: Practical Machine Learning Tools and Techniques (Morgan Kaufmann, 2005).
Chen, Y., Ladi, E., Herzmark, P., Robey, E. & Roysam, B. Automated 5-D analysis of cell migration and interaction in the thymic cortex from time-lapse sequences of 3-D multi-channel multi-photon images. J. Immunol. Methods340, 65–80 (2009). ArticleCAS Google Scholar
Barres, B.A. et al. Cell death and control of cell survival in the oligodendrocyte lineage. Cell70, 31–46 (1992). ArticleCAS Google Scholar
Barres, B.A., Lazar, M.A. & Raff, M.C. A novel role for thyroid hormone, glucocorticoids and retinoic acid in timing oligodendrocyte development. Development120, 1097–1108 (1994). CASPubMed Google Scholar
Soille, P. Morphological Image Analysis: Principles and Applications (Springer-Verlag, 1999).
Vincent, L. & Soille, P. Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans. Pattern Anal. Mach. Intell.13, 583–598 (1991). Article Google Scholar
Lin, J., Keogh, E., Lonardi, S. & Chiu, B. A symbolic representation of time series, with implications for streaming algorithms. Data Min. Knowl. Discov.15, 107–144 (2007). Article Google Scholar
Ng, A.Y., Jordan, M. & Weiss, Y. On Spectral Clustering: Analysis and an algorithm. Adv. Neural Inf. Process. Syst14, 849–856 (2001). Google Scholar
Al-Kofahi, O. et al. Automated cell lineage tracing: a high-throughput method to analyze cell proliferative behavior developed using mouse neural stem cells. Cell Cycle5, 327–335 (2006). ArticleCAS Google Scholar
Debeir, O., Van Ham, P., Kiss, R. & Decaestecker, C. Tracking of migrating cells under phase-contrast video microscopy with combined mean-shift processes. IEEE Trans. Med. Imaging24, 697–711 (2005). ArticleCAS Google Scholar
Jaqaman, K. et al. Robust single-particle tracking in live-cell time-lapse sequences. Nat. Methods5, 695–702 (2008). ArticleCAS Google Scholar
Li, K. et al. Cell population tracking and lineage construction with spatiotemporal context. Med. Image Anal.12, 546–566 (2008). Article Google Scholar
Meijering, E., Smal, I. & Danuser, G. Tracking in molecular bioimaging. IEEE Signal Process. Mag.23, 46–53 (2006). Article Google Scholar
Li, M. & Vitanyi, P.M.B. An Introduction to Kolmogorov Complexity and Its Applications (Springer Verlag, New York, 1997).
Li, M., Chen, X., Li, X., Ma, B. & Vitanyi, P.M.B. The similarity metric. IEEE Trans. Inf. Theory50, 3250–3264 (2004). Article Google Scholar
Cebrian, M., Alfonseca, M. & Ortega, A. The normalized compression distance is resistant to noise. IEEE Trans. Inf. Theory53, 1895–1900 (2007). Article Google Scholar
Keogh, E., Lonardi, S. & Ratanamahatana, C.A. Towards parameter-free data mining. in Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (ACM Press, Seattle, 2004).
Rissanen, J. Stochastic Complexity in Statistical Inquiry (World Scientific, Singapore, 1989).
Grünwald, P., Myung, I.J. & Pitt, M. Advances in Minimum Description Length: Theory and Applications (MIT Press, 2005).