Computational prediction of neural progenitor cell fates (original) (raw)

References

  1. Cayouette, M., Poggi, L. & Harris, W.A. Lineage in the vertebrate retina. Trends Neurosci. 29, 563–570 (2006).
    Article CAS Google Scholar
  2. Cayouette, M., Barres, B.A. & Raff, M. Importance of intrinsic mechanisms in cell fate decisions in the developing rat retina. Neuron 40, 897–904 (2003).
    Article CAS Google Scholar
  3. Godinho, L. et al. Nonapical symmetric divisions underlie horizontal cell layer formation in the developing retina in vivo. Neuron 56, 597–603 (2007).
    Article CAS Google Scholar
  4. Mu, X. et al. Ganglion cells are required for normal progenitor-cell proliferation but not cell-fate determination or patterning in the developing mouse retina. Curr. Biol. 15, 525–530 (2005).
    Article CAS Google Scholar
  5. Poggi, L., Vitorino, M., Masai, I. & Harris, W.A. Influences on neural lineage and mode of division in the zebrafish retina in vivo. J. Cell Biol. 171, 991–999 (2005).
    Article CAS Google Scholar
  6. Diaz, E. et al. Analysis of gene expression in the developing mouse retina. Proc. Natl. Acad. Sci. USA 100, 5491–5496 (2003).
    Article CAS Google Scholar
  7. Dorrell, M.I., Aguilar, E., Weber, C. & Friedlander, M. Global gene expression analysis of the developing postnatal mouse retina. Invest. Ophthalmol. Vis. Sci. 45, 1009–1019 (2004).
    Article Google Scholar
  8. Livesey, F.J., Young, T.L. & Cepko, C.L. An analysis of the gene expression program of mammalian neural progenitor cells. Proc. Natl. Acad. Sci. USA 101, 1374–1379 (2004).
    Article CAS Google Scholar
  9. Mu, X. et al. Gene expression in the developing mouse retina by EST sequencing and microarray analysis. Nucleic Acids Res. 29, 4983–4993 (2001).
    Article Google Scholar
  10. Trimarchi, J.M., Stadler, M.B. & Cepko, C.L. Individual retinal progenitor cells display extensive heterogeneity of gene expression. PLoS One 3, e1588 (2008).
    Article Google Scholar
  11. Tietjen, I. et al. Single-cell transcriptional analysis of neuronal progenitors. Neuron 38, 161–175 (2003).
    Article CAS Google Scholar
  12. Jessell, T.M. Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat. Rev. Genet. 1, 20–29 (2000).
    Article CAS Google Scholar
  13. Cohen, A.R., Bjornsson, C.S., Temple, S., Banker, G. & Roysam, B. Automatic summarization of changes in biological image sequences using algorithmic information theory. IEEE Trans. Pattern Anal. Mach. Intell. 31, 1386–1403 (2009).
    Article Google Scholar
  14. Kamvar, S.D., Klein, D. & Manning, C.D. Spectral learning. International Joint Conference of Artificial Intelligence (2003).
  15. Baye, L.M. & Link, B. Interkinetic nuclear migration and the selection of neurogenic cell divisions during vertebrate retinogenesis. J. Neurosci. 27, 10143–10152 (2007).
    Article CAS Google Scholar
  16. Cilibrasi, R. & Vitanyi, P.M.B. Clustering by compression. IEEE Trans. Inf. Theory 51, 1523–1545 (2005).
    Article Google Scholar
  17. Witten, I.H. & Frank, E. Data Mining: Practical Machine Learning Tools and Techniques (Morgan Kaufmann, 2005).
  18. Chen, Y., Ladi, E., Herzmark, P., Robey, E. & Roysam, B. Automated 5-D analysis of cell migration and interaction in the thymic cortex from time-lapse sequences of 3-D multi-channel multi-photon images. J. Immunol. Methods 340, 65–80 (2009).
    Article CAS Google Scholar
  19. Barres, B.A. et al. Cell death and control of cell survival in the oligodendrocyte lineage. Cell 70, 31–46 (1992).
    Article CAS Google Scholar
  20. Barres, B.A., Lazar, M.A. & Raff, M.C. A novel role for thyroid hormone, glucocorticoids and retinoic acid in timing oligodendrocyte development. Development 120, 1097–1108 (1994).
    CAS PubMed Google Scholar
  21. Soille, P. Morphological Image Analysis: Principles and Applications (Springer-Verlag, 1999).
  22. Vincent, L. & Soille, P. Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans. Pattern Anal. Mach. Intell. 13, 583–598 (1991).
    Article Google Scholar
  23. Lin, J., Keogh, E., Lonardi, S. & Chiu, B. A symbolic representation of time series, with implications for streaming algorithms. Data Min. Knowl. Discov. 15, 107–144 (2007).
    Article Google Scholar
  24. Ng, A.Y., Jordan, M. & Weiss, Y. On Spectral Clustering: Analysis and an algorithm. Adv. Neural Inf. Process. Syst 14, 849–856 (2001).
    Google Scholar
  25. Al-Kofahi, O. et al. Automated cell lineage tracing: a high-throughput method to analyze cell proliferative behavior developed using mouse neural stem cells. Cell Cycle 5, 327–335 (2006).
    Article CAS Google Scholar
  26. Debeir, O., Van Ham, P., Kiss, R. & Decaestecker, C. Tracking of migrating cells under phase-contrast video microscopy with combined mean-shift processes. IEEE Trans. Med. Imaging 24, 697–711 (2005).
    Article CAS Google Scholar
  27. Jaqaman, K. et al. Robust single-particle tracking in live-cell time-lapse sequences. Nat. Methods 5, 695–702 (2008).
    Article CAS Google Scholar
  28. Li, K. et al. Cell population tracking and lineage construction with spatiotemporal context. Med. Image Anal. 12, 546–566 (2008).
    Article Google Scholar
  29. Meijering, E., Smal, I. & Danuser, G. Tracking in molecular bioimaging. IEEE Signal Process. Mag. 23, 46–53 (2006).
    Article Google Scholar
  30. Bennett, C.H., Gacs, P., Ming, L., Vitanyi, M.B. & Zurek, W.H. Information distance. IEEE Trans. Inf. Theory 44, 1407–1423 (1998).
    Article Google Scholar
  31. Li, M. & Vitanyi, P.M.B. An Introduction to Kolmogorov Complexity and Its Applications (Springer Verlag, New York, 1997).
  32. Li, M., Chen, X., Li, X., Ma, B. & Vitanyi, P.M.B. The similarity metric. IEEE Trans. Inf. Theory 50, 3250–3264 (2004).
    Article Google Scholar
  33. Cebrian, M., Alfonseca, M. & Ortega, A. The normalized compression distance is resistant to noise. IEEE Trans. Inf. Theory 53, 1895–1900 (2007).
    Article Google Scholar
  34. Keogh, E., Lonardi, S. & Ratanamahatana, C.A. Towards parameter-free data mining. in Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (ACM Press, Seattle, 2004).
  35. Rissanen, J. Stochastic Complexity in Statistical Inquiry (World Scientific, Singapore, 1989).
  36. Grünwald, P., Myung, I.J. & Pitt, M. Advances in Minimum Description Length: Theory and Applications (MIT Press, 2005).

Download references