Dynamic reorganization of striatal circuits during the acquisition and consolidation of a skill (original) (raw)
References
Karni, A. et al. The acquisition of skilled motor performance: fast and slow experience-driven changes in primary motor cortex. Proc. Natl. Acad. Sci. USA95, 861–868 (1998). ArticleCAS Google Scholar
Miyachi, S., Hikosaka, O. & Lu, X. Differential activation of monkey striatal neurons in the early and late stages of procedural learning. Exp. Brain Res.146, 122–126 (2002). Article Google Scholar
Miyachi, S., Hikosaka, O., Miyashita, K., Karadi, Z. & Rand, M.K. Differential roles of monkey striatum in learning of sequential hand movement. Exp. Brain Res.115, 1–5 (1997). ArticleCAS Google Scholar
Kargo, W.J. & Nitz, D.A. Improvements in the signal-to-noise ratio of motor cortex cells distinguish early versus late phases of motor skill learning. J. Neurosci.24, 5560–5569 (2004). ArticleCAS Google Scholar
Shiffrin, R.M. & Schneider, W. Controlled and automatic human information processing. II. Perceptual learning, automatic attending, and a general theory. Psychol. Rev.84, 127–190 (1977). Article Google Scholar
Muellbacher, W. et al. Early consolidation in human primary motor cortex. Nature415, 640–644 (2002). ArticleCAS Google Scholar
Kleim, J.A. et al. Cortical synaptogenesis and motor map reorganization occur during late, but not early, phase of motor skill learning. J. Neurosci.24, 628–633 (2004). ArticleCAS Google Scholar
Jenkins, I.H., Brooks, D.J., Nixon, P.D., Frackowiak, R.S. & Passingham, R.E. Motor sequence learning: a study with positron emission tomography. J. Neurosci.14, 3775–3790 (1994). ArticleCAS Google Scholar
Doyon, J., Owen, A.M., Petrides, M., Sziklas, V. & Evans, A.C. Functional anatomy of visuomotor skill learning in human subjects examined with positron emission tomography. Eur. J. Neurosci.8, 637–648 (1996). ArticleCAS Google Scholar
Carelli, R.M., Wolske, M. & West, M.O. Loss of lever press–related firing of rat striatal forelimb neurons after repeated sessions in a lever pressing task. J. Neurosci.17, 1804–1814 (1997). ArticleCAS Google Scholar
Ungerleider, L.G., Doyon, J. & Karni, A. Imaging brain plasticity during motor skill learning. Neurobiol. Learn. Mem.78, 553–564 (2002). Article Google Scholar
Brasted, P.J. & Wise, S.P. Comparison of learning-related neuronal activity in the dorsal premotor cortex and striatum. Eur. J. Neurosci.19, 721–740 (2004). Article Google Scholar
Barnes, T.D., Kubota, Y., Hu, D., Jin, D.Z. & Graybiel, A.M. Activity of striatal neurons reflects dynamic encoding and recoding of procedural memories. Nature437, 1158–1161 (2005). ArticleCAS Google Scholar
Costa, R.M., Cohen, D. & Nicolelis, M.A. Differential corticostriatal plasticity during fast and slow motor skill learning in mice. Curr. Biol.14, 1124–1134 (2004). ArticleCAS Google Scholar
Voorn, P., Vanderschuren, L.J., Groenewegen, H.J., Robbins, T.W. & Pennartz, C.M. Putting a spin on the dorsal-ventral divide of the striatum. Trends Neurosci.27, 468–474 (2004). ArticleCAS Google Scholar
McGeorge, A.J. & Faull, R.L. The organization of the projection from the cerebral cortex to the striatum in the rat. Neuroscience29, 503–537 (1989). ArticleCAS Google Scholar
Yin, H.H., Ostlund, S.B., Knowlton, B.J. & Balleine, B.W. The role of the dorsomedial striatum in instrumental conditioning. Eur. J. Neurosci.22, 513–523 (2005). Article Google Scholar
Yin, H.H., Knowlton, B.J. & Balleine, B.W. Lesions of dorsolateral striatum preserve outcome expectancy, but disrupt habit formation in instrumental learning. Eur. J. Neurosci.19, 181–189 (2004). Article Google Scholar
Luft, A.R. & Buitrago, M.M. Stages of motor skill learning. Mol. Neurobiol.32, 205–216 (2005). ArticleCAS Google Scholar
Calabresi, P., Maj, R., Pisani, A., Mercuri, N.B. & Bernardi, G. Long-term synaptic depression in the striatum: physiological and pharmacological characterization. J. Neurosci.12, 4224–4233 (1992). ArticleCAS Google Scholar
Lovinger, D.M., Tyler, E.C. & Merritt, A. Short- and long-term synaptic depression in rat neostriatum. J. Neurophysiol.70, 1937–1949 (1993). ArticleCAS Google Scholar
Rioult-Pedotti, M.S., Friedman, D. & Donoghue, J.P. Learning-induced LTP in neocortex. Science290, 533–536 (2000). ArticleCAS Google Scholar
Gerfen, C.R. et al. D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science250, 1429–1432 (1990). ArticleCAS Google Scholar
Kreitzer, A.C. & Malenka, R.C. Endocannabinoid-mediated rescue of striatal LTD and motor deficits in Parkinson's disease models. Nature445, 643–647 (2007). ArticleCAS Google Scholar
Shen, W. et al. Cholinergic modulation of Kir2 channels selectively elevates dendritic excitability in striatopallidal neurons. Nat. Neurosci.10, 1458–1466 (2007). ArticleCAS Google Scholar
Shen, W., Flajolet, M., Greengard, P. & Surmeier, D.J. Dichotomous dopaminergic control of striatal synaptic plasticity. Science321, 848–851 (2008). ArticleCAS Google Scholar
Kerr, J.N. & Wickens, J.R. Dopamine D-1/D-5 receptor activation is required for long-term potentiation in the rat neostriatum in vitro. J. Neurophysiol.85, 117–124 (2001). ArticleCAS Google Scholar
Savasta, M., Dubois, A. & Scatton, B. Autoradiographic localization of D1 dopamine receptors in the rat brain with [3H]SCH 23390. Brain Res.375, 291–301 (1986). ArticleCAS Google Scholar
Joyce, J.N., Loeschen, S.K. & Marshall, J.F. Dopamine D-2 receptors in rat caudate-putamen: the lateral to medial gradient does not correspond to dopaminergic innervation. Brain Res.338, 209–218 (1985). ArticleCAS Google Scholar
Reynolds, J.N., Hyland, B.I. & Wickens, J.R. A cellular mechanism of reward-related learning. Nature413, 67–70 (2001). ArticleCAS Google Scholar
Dang, M.T. et al. Disrupted motor learning and long-term synaptic plasticity in mice lacking NMDAR1 in the striatum. Proc. Natl. Acad. Sci. USA103, 15254–15259 (2006). ArticleCAS Google Scholar
Carrillo-Reid, L. et al. Encoding network states by striatal cell assemblies. J. Neurophysiol.99, 1435–1450 (2008). Article Google Scholar
Kasanetz, F., Riquelme, L.A., Della-Maggiore, V., O'Donnell, P. & Murer, M.G. Functional integration across a gradient of corticostriatal channels controls UP state transitions in the dorsal striatum. Proc. Natl. Acad. Sci. USA105, 8124–8129 (2008). ArticleCAS Google Scholar
Yin, H.H. & Knowlton, B.J. The role of the basal ganglia in habit formation. Nat. Rev. Neurosci.7, 464–476 (2006). ArticleCAS Google Scholar
Belin, D. & Everitt, B.J. Cocaine seeking habits depend upon dopamine-dependent serial connectivity linking the ventral with the dorsal striatum. Neuron57, 432–441 (2008). CAS Google Scholar
Takahashi, Y., Roesch, M.R., Stalnaker, T.A. & Schoenbaum, G. Cocaine exposure shifts the balance of associative encoding from ventral to dorsolateral striatum. Front. Integr. Neurosci.1, 11 (2007). Article Google Scholar
Yin, H.H., Knowlton, B.J. & Balleine, B.W. Inactivation of dorsolateral striatum enhances sensitivity to changes in the action-outcome contingency in instrumental conditioning. Behav. Brain Res.166, 189–196 (2006). Article Google Scholar
Hilario, M.R.F., Clouse, E., Yin, H.H. & Costa, R.M. Endocannabinoid signaling is critical for habit formation. Front. Integr. Neurosci.1, 6 (2007). Article Google Scholar
Wickens, J.R., Budd, C.S., Hyland, B.I. & Arbuthnott, G.W. Striatal contributions to reward and decision making: making sense of regional variations in a reiterated processing matrix. Ann. NY Acad. Sci.1104, 192–212 (2007). Article Google Scholar
Jedynak, J.P., Uslaner, J.M., Esteban, J.A. & Robinson, T.E. Methamphetamine-induced structural plasticity in the dorsal striatum. Eur. J. Neurosci.25, 847–853 (2007). Article Google Scholar
Flajolet, M. et al. FGF acts as a co-transmitter through adenosine A(2A) receptor to regulate synaptic plasticity. Nat. Neurosci.11, 1402–1409 (2008). ArticleCAS Google Scholar
Rebola, N., Lujan, R., Cunha, R.A. & Mulle, C. Adenosine A2A receptors are essential for long-term potentiation of NMDA-EPSCs at hippocampal mossy fiber synapses. Neuron57, 121–134 (2008). ArticleCAS Google Scholar
Choi, W.Y., Balsam, P.D. & Horvitz, J.C. Extended habit training reduces dopamine mediation of appetitive response expression. J. Neurosci.25, 6729–6733 (2005). ArticleCAS Google Scholar
Richfield, E.K., Penney, J.B. & Young, A.B. Anatomical and affinity state comparisons between dopamine D1 and D2 receptors in the rat central nervous system. Neuroscience30, 767–777 (1989). ArticleCAS Google Scholar
Ljungberg, T., Apicella, P. & Schultz, W. Responses of monkey dopamine neurons during learning of behavioral reactions. J. Neurophysiol.67, 145–163 (1992). ArticleCAS Google Scholar
Taverna, S., Ilijic, E. & Surmeier, D.J. Recurrent collateral connections of striatal medium spiny neurons are disrupted in models of Parkinson's disease. J. Neurosci.28, 5504–5512 (2008). ArticleCAS Google Scholar
Martin, J.P. The Basal Ganglia and Posture (Pitman Medical, London, 1967).
Briand, K.A., Strallow, D., Hening, W., Poizner, H. & Sereno, A.B. Control of voluntary and reflexive saccades in Parkinson's disease. Exp. Brain Res.129, 38–48 (1999). ArticleCAS Google Scholar
Costa, R.M. et al. Rapid alterations in corticostriatal ensemble coordination during acute dopamine-dependent motor dysfunction. Neuron52, 359–369 (2006). ArticleCAS Google Scholar
Gerdeman, G.L., Ronesi, J. & Lovinger, D.M. Postsynaptic endocannabinoid release is critical to long-term depression in the striatum. Nat. Neurosci.5, 446–451 (2002). ArticleCAS Google Scholar