Dynamic reorganization of striatal circuits during the acquisition and consolidation of a skill (original) (raw)

References

  1. Karni, A. et al. The acquisition of skilled motor performance: fast and slow experience-driven changes in primary motor cortex. Proc. Natl. Acad. Sci. USA 95, 861–868 (1998).
    Article CAS Google Scholar
  2. Miyachi, S., Hikosaka, O. & Lu, X. Differential activation of monkey striatal neurons in the early and late stages of procedural learning. Exp. Brain Res. 146, 122–126 (2002).
    Article Google Scholar
  3. Miyachi, S., Hikosaka, O., Miyashita, K., Karadi, Z. & Rand, M.K. Differential roles of monkey striatum in learning of sequential hand movement. Exp. Brain Res. 115, 1–5 (1997).
    Article CAS Google Scholar
  4. Kargo, W.J. & Nitz, D.A. Improvements in the signal-to-noise ratio of motor cortex cells distinguish early versus late phases of motor skill learning. J. Neurosci. 24, 5560–5569 (2004).
    Article CAS Google Scholar
  5. Shiffrin, R.M. & Schneider, W. Controlled and automatic human information processing. II. Perceptual learning, automatic attending, and a general theory. Psychol. Rev. 84, 127–190 (1977).
    Article Google Scholar
  6. Muellbacher, W. et al. Early consolidation in human primary motor cortex. Nature 415, 640–644 (2002).
    Article CAS Google Scholar
  7. Kleim, J.A. et al. Cortical synaptogenesis and motor map reorganization occur during late, but not early, phase of motor skill learning. J. Neurosci. 24, 628–633 (2004).
    Article CAS Google Scholar
  8. Jenkins, I.H., Brooks, D.J., Nixon, P.D., Frackowiak, R.S. & Passingham, R.E. Motor sequence learning: a study with positron emission tomography. J. Neurosci. 14, 3775–3790 (1994).
    Article CAS Google Scholar
  9. Doyon, J., Owen, A.M., Petrides, M., Sziklas, V. & Evans, A.C. Functional anatomy of visuomotor skill learning in human subjects examined with positron emission tomography. Eur. J. Neurosci. 8, 637–648 (1996).
    Article CAS Google Scholar
  10. Carelli, R.M., Wolske, M. & West, M.O. Loss of lever press–related firing of rat striatal forelimb neurons after repeated sessions in a lever pressing task. J. Neurosci. 17, 1804–1814 (1997).
    Article CAS Google Scholar
  11. Ungerleider, L.G., Doyon, J. & Karni, A. Imaging brain plasticity during motor skill learning. Neurobiol. Learn. Mem. 78, 553–564 (2002).
    Article Google Scholar
  12. Brasted, P.J. & Wise, S.P. Comparison of learning-related neuronal activity in the dorsal premotor cortex and striatum. Eur. J. Neurosci. 19, 721–740 (2004).
    Article Google Scholar
  13. Barnes, T.D., Kubota, Y., Hu, D., Jin, D.Z. & Graybiel, A.M. Activity of striatal neurons reflects dynamic encoding and recoding of procedural memories. Nature 437, 1158–1161 (2005).
    Article CAS Google Scholar
  14. Costa, R.M., Cohen, D. & Nicolelis, M.A. Differential corticostriatal plasticity during fast and slow motor skill learning in mice. Curr. Biol. 14, 1124–1134 (2004).
    Article CAS Google Scholar
  15. Voorn, P., Vanderschuren, L.J., Groenewegen, H.J., Robbins, T.W. & Pennartz, C.M. Putting a spin on the dorsal-ventral divide of the striatum. Trends Neurosci. 27, 468–474 (2004).
    Article CAS Google Scholar
  16. McGeorge, A.J. & Faull, R.L. The organization of the projection from the cerebral cortex to the striatum in the rat. Neuroscience 29, 503–537 (1989).
    Article CAS Google Scholar
  17. Yin, H.H., Ostlund, S.B., Knowlton, B.J. & Balleine, B.W. The role of the dorsomedial striatum in instrumental conditioning. Eur. J. Neurosci. 22, 513–523 (2005).
    Article Google Scholar
  18. Yin, H.H., Knowlton, B.J. & Balleine, B.W. Lesions of dorsolateral striatum preserve outcome expectancy, but disrupt habit formation in instrumental learning. Eur. J. Neurosci. 19, 181–189 (2004).
    Article Google Scholar
  19. Luft, A.R. & Buitrago, M.M. Stages of motor skill learning. Mol. Neurobiol. 32, 205–216 (2005).
    Article CAS Google Scholar
  20. Calabresi, P., Maj, R., Pisani, A., Mercuri, N.B. & Bernardi, G. Long-term synaptic depression in the striatum: physiological and pharmacological characterization. J. Neurosci. 12, 4224–4233 (1992).
    Article CAS Google Scholar
  21. Lovinger, D.M., Tyler, E.C. & Merritt, A. Short- and long-term synaptic depression in rat neostriatum. J. Neurophysiol. 70, 1937–1949 (1993).
    Article CAS Google Scholar
  22. Rioult-Pedotti, M.S., Friedman, D. & Donoghue, J.P. Learning-induced LTP in neocortex. Science 290, 533–536 (2000).
    Article CAS Google Scholar
  23. Gerfen, C.R. et al. D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250, 1429–1432 (1990).
    Article CAS Google Scholar
  24. Kreitzer, A.C. & Malenka, R.C. Endocannabinoid-mediated rescue of striatal LTD and motor deficits in Parkinson's disease models. Nature 445, 643–647 (2007).
    Article CAS Google Scholar
  25. Shen, W. et al. Cholinergic modulation of Kir2 channels selectively elevates dendritic excitability in striatopallidal neurons. Nat. Neurosci. 10, 1458–1466 (2007).
    Article CAS Google Scholar
  26. Shen, W., Flajolet, M., Greengard, P. & Surmeier, D.J. Dichotomous dopaminergic control of striatal synaptic plasticity. Science 321, 848–851 (2008).
    Article CAS Google Scholar
  27. Kerr, J.N. & Wickens, J.R. Dopamine D-1/D-5 receptor activation is required for long-term potentiation in the rat neostriatum in vitro. J. Neurophysiol. 85, 117–124 (2001).
    Article CAS Google Scholar
  28. Savasta, M., Dubois, A. & Scatton, B. Autoradiographic localization of D1 dopamine receptors in the rat brain with [3H]SCH 23390. Brain Res. 375, 291–301 (1986).
    Article CAS Google Scholar
  29. Joyce, J.N., Loeschen, S.K. & Marshall, J.F. Dopamine D-2 receptors in rat caudate-putamen: the lateral to medial gradient does not correspond to dopaminergic innervation. Brain Res. 338, 209–218 (1985).
    Article CAS Google Scholar
  30. Reynolds, J.N., Hyland, B.I. & Wickens, J.R. A cellular mechanism of reward-related learning. Nature 413, 67–70 (2001).
    Article CAS Google Scholar
  31. Dang, M.T. et al. Disrupted motor learning and long-term synaptic plasticity in mice lacking NMDAR1 in the striatum. Proc. Natl. Acad. Sci. USA 103, 15254–15259 (2006).
    Article CAS Google Scholar
  32. Carrillo-Reid, L. et al. Encoding network states by striatal cell assemblies. J. Neurophysiol. 99, 1435–1450 (2008).
    Article Google Scholar
  33. Kasanetz, F., Riquelme, L.A., Della-Maggiore, V., O'Donnell, P. & Murer, M.G. Functional integration across a gradient of corticostriatal channels controls UP state transitions in the dorsal striatum. Proc. Natl. Acad. Sci. USA 105, 8124–8129 (2008).
    Article CAS Google Scholar
  34. Yin, H.H. & Knowlton, B.J. The role of the basal ganglia in habit formation. Nat. Rev. Neurosci. 7, 464–476 (2006).
    Article CAS Google Scholar
  35. Belin, D. & Everitt, B.J. Cocaine seeking habits depend upon dopamine-dependent serial connectivity linking the ventral with the dorsal striatum. Neuron 57, 432–441 (2008).
    CAS Google Scholar
  36. Takahashi, Y., Roesch, M.R., Stalnaker, T.A. & Schoenbaum, G. Cocaine exposure shifts the balance of associative encoding from ventral to dorsolateral striatum. Front. Integr. Neurosci. 1, 11 (2007).
    Article Google Scholar
  37. Yin, H.H., Knowlton, B.J. & Balleine, B.W. Inactivation of dorsolateral striatum enhances sensitivity to changes in the action-outcome contingency in instrumental conditioning. Behav. Brain Res. 166, 189–196 (2006).
    Article Google Scholar
  38. Hilario, M.R.F., Clouse, E., Yin, H.H. & Costa, R.M. Endocannabinoid signaling is critical for habit formation. Front. Integr. Neurosci. 1, 6 (2007).
    Article Google Scholar
  39. Wickens, J.R., Budd, C.S., Hyland, B.I. & Arbuthnott, G.W. Striatal contributions to reward and decision making: making sense of regional variations in a reiterated processing matrix. Ann. NY Acad. Sci. 1104, 192–212 (2007).
    Article Google Scholar
  40. Jedynak, J.P., Uslaner, J.M., Esteban, J.A. & Robinson, T.E. Methamphetamine-induced structural plasticity in the dorsal striatum. Eur. J. Neurosci. 25, 847–853 (2007).
    Article Google Scholar
  41. Flajolet, M. et al. FGF acts as a co-transmitter through adenosine A(2A) receptor to regulate synaptic plasticity. Nat. Neurosci. 11, 1402–1409 (2008).
    Article CAS Google Scholar
  42. Rebola, N., Lujan, R., Cunha, R.A. & Mulle, C. Adenosine A2A receptors are essential for long-term potentiation of NMDA-EPSCs at hippocampal mossy fiber synapses. Neuron 57, 121–134 (2008).
    Article CAS Google Scholar
  43. Choi, W.Y., Balsam, P.D. & Horvitz, J.C. Extended habit training reduces dopamine mediation of appetitive response expression. J. Neurosci. 25, 6729–6733 (2005).
    Article CAS Google Scholar
  44. Richfield, E.K., Penney, J.B. & Young, A.B. Anatomical and affinity state comparisons between dopamine D1 and D2 receptors in the rat central nervous system. Neuroscience 30, 767–777 (1989).
    Article CAS Google Scholar
  45. Ljungberg, T., Apicella, P. & Schultz, W. Responses of monkey dopamine neurons during learning of behavioral reactions. J. Neurophysiol. 67, 145–163 (1992).
    Article CAS Google Scholar
  46. Taverna, S., Ilijic, E. & Surmeier, D.J. Recurrent collateral connections of striatal medium spiny neurons are disrupted in models of Parkinson's disease. J. Neurosci. 28, 5504–5512 (2008).
    Article CAS Google Scholar
  47. Martin, J.P. The Basal Ganglia and Posture (Pitman Medical, London, 1967).
  48. Briand, K.A., Strallow, D., Hening, W., Poizner, H. & Sereno, A.B. Control of voluntary and reflexive saccades in Parkinson's disease. Exp. Brain Res. 129, 38–48 (1999).
    Article CAS Google Scholar
  49. Costa, R.M. et al. Rapid alterations in corticostriatal ensemble coordination during acute dopamine-dependent motor dysfunction. Neuron 52, 359–369 (2006).
    Article CAS Google Scholar
  50. Gerdeman, G.L., Ronesi, J. & Lovinger, D.M. Postsynaptic endocannabinoid release is critical to long-term depression in the striatum. Nat. Neurosci. 5, 446–451 (2002).
    Article CAS Google Scholar

Download references