The IKK NF-κB system: a treasure trove for drug development (original) (raw)
Ghosh, S., May, M. J. & Kopp, E. B. NF-κB and Rel proteins: evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol.16, 225–260 (1998). CASPubMed Google Scholar
Karin, M. & Ben-Neriah, Y. Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu. Rev. Immunol.18, 621–663 (2000). CASPubMed Google Scholar
Solan, N. J., Miyoshi, H., Carmona, E. M., Bren, G. D. & Paya, C. V. RelB cellular regulation and transcriptional activity are regulated by p100. J. Biol. Chem.277, 1405–1418 (2002). CASPubMed Google Scholar
Ghosh, S. & Karin, M. Missing pieces in the NF-κB puzzle. Cell109, S81–S96 (2002). CASPubMed Google Scholar
Rothwarf, D. M., Zandi, E., Natoli, G. & Karin, M. IKK-γ is an essential regulatory subunit of the IκB kinase complex. Nature395, 297–300 (1998). CASPubMed Google Scholar
Makris, C. et al. Female mice heterozygous for IKK-γ/NEMO deficiencies develop a dermatopathy similar to the human X-linked disorder incontinentia pigmenti. Mol. Cell.5, 969–979 (2000). CASPubMed Google Scholar
Dejardin, E. et al. The lymphotoxin-β receptor induces different patterns of gene expression via two NF-κB pathways. Immunity17, 525–535 (2002). CASPubMed Google Scholar
Li, Q., Van Antwerp, D., Mercurio, F., Lee, K. F. & Verma, I. M. Severe liver degeneration in mice lacking the IκB kinase 2 gene. Science284, 321–325 (1999). CASPubMed Google Scholar
Li, Z. W. et al. The IKKβ subunit of IκB kinase (IKK) is essential for nuclear factor κB activation and prevention of apoptosis. J. Exp. Med.189, 1839–1845 (1999). CASPubMedPubMed Central Google Scholar
Chen, L. W. et al. The two faces of IKK and NF-κB inhibition: prevention of systemic inflammation but increased local injury following intestinal ischemia-reperfusion. Nature Med.9, 575–581 (2003). This paper demonstrates that the IKK-β ablation is a driving force for the initiation and maintenance of acute systemic inflammation. CASPubMed Google Scholar
Hu, Y. et al. Abnormal morphogenesis but intact IKK activation in mice lacking the IKKα subunit of IκB kinase. Science284, 316–320 (1999). CASPubMed Google Scholar
Hu, Y. et al. IKKα controls formation of the epidermis independently of NF-κB. Nature410, 710–714 (2001). CASPubMed Google Scholar
Cao, Y. et al. IKKα provides an essential link between RANK signaling and cyclin D1 expression during mammary gland development. Cell107, 763–775 (2001). CASPubMed Google Scholar
Yamamoto, Y., Verma, U. N., Prajapati, S., Kwak, Y. T. & Gaynor, R. B. Histone H3 phosphorylation by IKK-α is critical for cytokine-induced gene expression. Nature423, 655–659 (2003). CASPubMed Google Scholar
Israel, A. Signal transduction: a regulator branches out. Nature423, 596–597 (2003). CASPubMed Google Scholar
Senftleben, U. et al. Activation by IKKα of a second, evolutionary conserved, NF-κB signaling pathway. Science293, 1495–1499 (2001). CASPubMed Google Scholar
Karin, M. & Lin, A. NF-κB at the crossroads of life and death. Nature Immunol.3, 221–227 (2002). CAS Google Scholar
Barnes, P. J. & Karin, M. Nuclear factor-κB — a pivotal transcription factor in chronic inflammatory diseases. N. Engl. J. Med.336, 1066–1071 (1997). CASPubMed Google Scholar
Neurath, M. F. et al. Cytokine gene transcription by NF-κB family members in patients with inflammatory bowel disease. Ann. NY Acad. Sci.859, 149–159 (1998). CASPubMed Google Scholar
Luque, I. & Gelinas, C. Rel/NF-κB and IκB factors in oncogenesis. Semin. Cancer. Biol.8, 103–111 (1997). CASPubMed Google Scholar
Gilmore, T. D., Koedood, M., Piffat, K. A. & White, D. W. Rel/NF-κB/IκB proteins and cancer. Oncogene13, 1367–1378 (1996). CASPubMed Google Scholar
Haefner, B. NF-κB: arresting a major culprit in cancer. Drug Discov. Today7, 653–663 (2002). CASPubMed Google Scholar
Alkalay, I. et al. Stimulation-dependent IκB-α phosphorylation marks the NF-κB inhibitor for degradation via the ubiquitin–proteasome pathway. Proc. Natl Acad. Sci. USA92, 10599–10603 (1995). CASPubMedPubMed Central Google Scholar
Xiao, G. et al. Retroviral oncoprotein Tax induces processing of NF-κB2/p100 in T cells: evidence for the involvement of IKKα. EMBO J.20, 6805–6815 (2001). CASPubMedPubMed Central Google Scholar
Lenz, H. J. Clinical update: proteasome inhibitors in solid tumors. Cancer Treat Rev.29 (Suppl. 1), 41–48 (2003). CASPubMed Google Scholar
Kitagawa, M. et al. An F-box protein, FWD1, mediates ubiquitin-dependent proteolysis of β-catenin. EMBO J.18, 2401–2410 (1999). CASPubMedPubMed Central Google Scholar
Winston, J. T. et al. The SCF-βTRCP ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IκBβ and B-catenin and stimulates IκBα ubiquitination in vitro. Genes Dev.13, 270–283 (1999). CASPubMedPubMed Central Google Scholar
Fuchs, S. Y., Chen, A., Xiong, Y., Pan, Z. Q. & Ronai, Z. HOS, a human homolog of Slimb, forms an SCF complex with Skp1 and Cullin1 and targets the phosphorylation-dependent degradation of IκB and β-catenin. Oncogene18, 2039–2046 (1999). CASPubMed Google Scholar
Rubinfeld, B. et al. Stabilization of β-catenin by genetic defects in melanoma cell lines. Science275, 1790–1792 (1997). CASPubMed Google Scholar
Morin, P. J. et al. Activation of β-catenin-Tcf signaling in colon cancer by mutations in β-catenin or APC. Science275, 1787–1790 (1997). CASPubMed Google Scholar
Kopp, E. & Ghosh, S. Inhibition of NF-κB by sodium salicylate and aspirin. Science265, 956–959 (1994). CASPubMed Google Scholar
Pierce, J. W., Read, M. A., Ding, H., Luscinskas, F. W. & Collins, T. Salicylates inhibit IκBα phosphorylation, endothelial-leukocyte adhesion molecule expression, and neutrophil transmigration. J. Immunol.156, 3961–3969 (1996). CASPubMed Google Scholar
Yin, M. -J., Yamamoto, Y. & Gaynor, R. B. The anti-inflammatory agents aspirin and salicylate inhibit the activity of IκB kinase-β. Nature396, 77–80 (1998). This is the first study to provide evidence that IKK-β is a potential target for NF-κB inhibition. CASPubMed Google Scholar
Yamamoto, Y., Yin, M. -J., Lin, K. -M. & Gaynor, R. B. Sulindac inhibits activation of the NF-κB pathway. J. Biol. Chem.274, 27307–27314 (1999). CASPubMed Google Scholar
Berman, K. S. et al. Sulindac enhances tumor necrosis factor-α-mediated apoptosis of lung cancer cell lines by inhibition of nuclear factor-κB. Clin. Cancer Res.8, 354–360 (2002). CASPubMed Google Scholar
Yasui, H., Adachi, M. & Imai, K. Combination of tumor necrosis factor-α with sulindac augments its apoptotic potential and suppresses tumor growth of human carcinoma cells in nude mice. Cancer97, 1412–1420 (2003). CASPubMed Google Scholar
Wahl, C., Liptay, S., Adler, G. & Schmid, R. M. Sulfasalazine: a potent and specific inhibitor of NF-κB. J. Clin. Invest.101, 1163–1174 (1997). Google Scholar
Yan, F. & Polk, D. B. Aminosalicylic acid inhibits IκB kinase-α phosphorylation of IκBα in mouse intestinal epithelial cells. J. Biol. Chem.274, 36631–36636 (1999). CASPubMed Google Scholar
Egan, L. J. et al. Inhibition of interleukin-1-stimulated NF-κB RelA/p65 phosphorylation by mesalamine is accompanied by decreased transcriptional activity. J. Biol. Chem.274, 26448–26453 (1999). CASPubMed Google Scholar
Dredge, K., Dalgleish, A. G. & Marriott, J. B. Thalidomide analogs as emerging anti-cancer drugs. Anticancer Drugs14, 331–335 (2003). CASPubMed Google Scholar
Keifer, J. A., Guttridge, D. C., Ashburner, B. P. & Baldwin, A. S. Jr. Inhibition of NF-κB activity by thalidomide through suppression of IκB kinase activity. J. Biol. Chem.276, 22382–22387 (2001). CASPubMed Google Scholar
Majumdar, S., Lamothe, B. & Aggarwal, B. B. Thalidomide suppresses NF-κB activation induced by TNF and H2O2, but not that activated by ceramide, lipopolysaccharides, or phorbol ester. J. Immunol.168, 2644–2651 (2002). CASPubMed Google Scholar
Mitsiades, N. et al. Apoptotic signaling induced by immunomodulatory thalidomide analogs in human multiple myeloma cells: therapeutic implications. Blood99, 4525–4530 (2002). CASPubMed Google Scholar
Gilroy, D. W. et al. Inducible cyclooxygenase may have anti-inflammatory properties. Nature Med.5, 698–701 (1999). CASPubMed Google Scholar
Ricote, M., Li, A. C., Willson, T. M., Kelly, C. J. & Glass, C. K. The peroxisome proliferator-activated receptor-γ is a negative regulator of macrophage activation. Nature391, 79–82 (1998). CASPubMed Google Scholar
Rossi, A. et al. Anti-inflammatory cyclopentenone prostaglandins are direct inhibitors of IκB kinase. Nature403, 103–108 (2000). CASPubMed Google Scholar
Straus, D. S. et al. 15-deoxy-Δ12,14-prostaglandin J2 inhibits multiple steps in the NF-κB signaling pathway. Proc. Natl Acad. Sci. USA97, 4844–4849 (2000). CASPubMedPubMed Central Google Scholar
Lawrence, T., Gilroy, D. W., Colville-Nash, P. R. & Willoughby, D. A. Possible new role for NF-κB in the resolution of inflammation. Nature Med.7, 1291–1297 (2001). CASPubMed Google Scholar
Bowie, A. G. & O'Neill, L. A. Vitamin C inhibits NF-κB activation by TNF via the activation of p38 mitogen-activated protein kinase. J. Immunol.165, 7180–7188 (2000). CASPubMed Google Scholar
Carcamo, J. M., Pedraza, A., Borquez-Ojeda, O. & Golde, D. W. Vitamin C suppresses TNFα-induced NF-κB activation by inhibiting IκBα phosphorylation. Biochemistry41, 12995–13002 (2002). CASPubMed Google Scholar
Tsai, S. H., Liang, Y. C., Lin-Shiau, S. Y. & Lin, J. K. Suppression of TNFα-mediated NF-κB activity by myricetin and other flavonoids through downregulating the activity of IKK in ECV304 cells. J. Cell Biochem.74, 606–615 (1999). CASPubMed Google Scholar
Holmes-McNary, M. & Baldwin, A. S. Jr. Chemopreventive properties of trans-resveratrol are associated with inhibition of activation of the IκB kinase. Cancer Res.60, 3477–3483 (2000). CASPubMed Google Scholar
Berlett, B. S. & Stadtman, E. R. Protein oxidation in aging, disease, and oxidative stress. J. Biol. Chem.272, 20313–20316 (1997). CASPubMed Google Scholar
Hayakawa, M. et al. Evidence that reactive oxygen species do not mediate NF-κB activation. EMBO J.22, 3356–3366 (2003). CASPubMedPubMed Central Google Scholar
Sakon, S. et al. NF-κB inhibits TNF-induced accumulation of ROS that mediate prolonged MAPK activation and necrotic cell death. EMBO J22, 3898–3909 (2003). CASPubMedPubMed Central Google Scholar
Blackwell, T. S., Blackwell, T. R., Holden, E. P., Christman, B. W. & Christman, J. W. In vivo antioxidant treatment suppresses nuclear factor-κB activation and neutrophilic lung inflammation. J. Immunol.157, 1630–1637 (1996). CASPubMed Google Scholar
Anest, V. et al. A nucleosomal function for IκB kinase-α in NF-κB-dependent gene expression. Nature423, 659–663 (2003). CASPubMed Google Scholar
Signal Pharmaceuticals, Inc. Quinazoline analogs and related compounds and methods for treating inflammatory conditions. WO 199901441 (1999).
Leisten, J. C. et al. Identification of a disease modifying IKK2 inhibitor in rat adjuvant arthritis. Inflamm. Res.51 (Suppl. 2), A25 (2002). Google Scholar
Palanki, M. S. et al. Structure–activity relationship studies of ethyl 2-[(3-methyl-2,5-dioxo(3-pyrrolinyl))amino]-4-(trifluoromethyl)pyrimidine-5-carboxylate: an inhibitor of AP-1 and NF-κB mediated gene expression. Bioorg. Med. Chem. Lett.12, 2573–2577 (2002). CASPubMed Google Scholar
Aventis Pharma. Preparation of substituted β-carbolines as potential therapeutics in diseases associated with increased IκB kinase activity. WO 2001068648 (2001).
Castro, A. C. et al. Novel IKK inhibitors: β-carbolines. Bioorg. Med. Chem. Lett.13, 2419–2422 (2003). CASPubMed Google Scholar
Hideshima, T. et al. NF-κB as a therapeutic target in multiple myeloma. J. Biol. Chem.277, 16639–16647 (2003). This paper reports the use of small-molecule inhibitors of IKK-β to prevent NF-κB activation, and its thrapeutic role in inhibiting the growth of the haematological cancer multiple myeloma. Google Scholar
Bristol-Myers Squibb Co. Method of treating inflammatory and immune diseases using 4-amino substituted imidazoquinoxaline, benzopyrazoloquinazoline, benzoimidazoquinoxaline and benzoimidazoquinoline inhibitors of IκB kinase (IKK). WO 2002060386 (2002).
Burke, J. R. et al. BMS-345541 is a highly selective inhibitor of IκB kinase that binds at an allosteric site of the enzyme and blocks NF-κB-dependent transcription in mice. J. Biol. Chem.278, 1450–1456 (2003). CASPubMed Google Scholar
McIntyre, K. W. et al. A highly selective inhibitor of IκB kinase, BMS-345541, blocks both joint inflammation and destruction in collagen-induced arthritis in mice. Arthritis Rheum.48, 2652–2659 (2003). CASPubMed Google Scholar
Kishore, N. et al. A selective IKK-2 inhibitor blocks NF-κB-dependent gene expression in IL-1β stimulated synovial fibroblasts. J. Biol. Chem.278, 32861–32871 (2003). References 65 and 67 focus on the therapeutic potential of small-molecule inhibitors of IKK-β for the treatment of inflammation. The molecule in reference 65 is an allosteric site inhibitor of IKK-β, whereas reference 67 reports the development of an ATP-competitive inhibitor of IKK-β. CASPubMed Google Scholar
Smithkline Beecham Corp. Preparation of 2-aminothiophene-3-carboxamides as NF-κB inhibitors. WO 2002030353 (2002).
SmithKline Beecham Corp. NF-κB inhibitors. WO 2003029242 (2003).
AstraZeneca. Preparation of ureido–carboxamido thiophene as inhibitors of IKK2 kinase. WO 2003010163 (2003).
AstraZeneca. Preparation of thiophenecarboxamides as inhibitors of the enzyme IKK-2. WO 2001058890 (2001).
Roshak, A. K. et al. A small molecule inhibitor of IκB kinase β (IKKβ) blocks inflammation and protects joint integrity in in vivo models of arthritis. Inflamm. Res.51 (Suppl. 2), S4 (2002). Google Scholar
Bayer. Preparation of 2,4-diarylpyridines as IκB kinase β inhibitors useful as antiinflammatories. WO 2002044153 (2002).
Bayer, P paration of hydroxyarylpyridines with IκB kinase β (IKK) inhibiting activity. WO 2002024679 (2002).
Murata, T. et al. Discovery of novel and selective IKK-β serine-threonine protein kinase inhibitors. Part 1. Bioorg. Med. Chem. Lett.13, 913–918 (2003). CASPubMed Google Scholar
Signal Pharmaceuticals, Inc. Preparation of anilinopyrimidines as IKK inhibitors. WO 2002046171 (2002).
Bayer. Preparation of optically active pyridooxazinones as antiinflammatory agents. WO 2003076447 (2003).
Aventis Pharma. Preparation of amino acid indolecarboxamides as modulators of NFκB activity. WO 2001030774 (2001).
Aventis Pharma. Preparation of benzimidazolecarboxylic acid amino acid amides as IκB kinase inhibitors. WO 2001000610 (2001).
Pharmacia Corp. Preparation of pyrazolo [4,3-c]quinolines, chromeno [4,3-c] pyrazoles, and analogs for treatment of inflammation. WO 2003024936 (2003).
Pharmacia Corp. Preparation of 4,5-dihydro-1H-benzo[g]indazole-3-carboxamides for treatment of inflammation. WO 2003024935 (2003).
Tularik Inc. Preparation of imidazolylquinolinecarboxaldehyde semicarbazones as IKK modulators. WO 2002041843 (2002).
Smithkline Beecham Corp. Preparation of 5-amino-1H-imidazole-4-carboxamides as NF-κB inhibitors. WO 200230423 (2002).
Leo Pharma. A method using cyanoguanidine compounds for modulating NFκB activity and use for the treatment of cancer. WO 2002094265 (2002).
Leo Pharma. Antitumor drug–cyanoguanidine IKK inhibitor combination. WO 2002094322 (2002).
Schou, C. et al. Novel cyanoguanidines with potent oral antitumour activity. Bioorg. Med. Chem. Lett.7, 3095–3100 (1997). CAS Google Scholar
Hjarnaa, P. J. et al. CHS 828, a novel pyridyl cyanoguanidine with potent antitumor activity in vitro and in vivo. Cancer Res.59, 5751–5157 (1999). CASPubMed Google Scholar
Martinsson, P. et al. The combination of the antitumoural pyridyl cyanoguanidine CHS 828 and etoposide in vitro — from cytotoxic synergy to complete inhibition of apoptosis. Br. J. Pharmacol.137, 568–573, (2002). CASPubMedPubMed Central Google Scholar
Isis Pharmaceuticals, Inc. Antisense modulation of Inhibitor-κ B kinase-β gene expression WO 2000031105 (2000).
Takaesu, G. et al. TAK1 is critical for IκB kinase-mediated activation of the NF-κB pathway. J. Mol. Biol.326, 105–15 (2003). This study reports the first demonstration of RNAi-based gene silencing of the IKK proteins and further establishes the role of TAK1, IKK-α and IKK-β on TNF-α and IL-1 activation of the NF-κB pathway. CASPubMed Google Scholar
May, M. J. & Ghosh, S. Anti-inflammatory compounds and uses thereof. A cell-permeable peptide encompassing NEMO binding domain of IκB kinase was able to not only inhibit TNFα-induced NF-κB activation but also reduce expression of E-selectin, an NF-κB-dependent target gene, in primary human endothelial cells. WO 2002156000 (2002).
May, M. et al. Selective inhibition of NF-κB activation by a peptide that blocks the interaction of NEMO with the IκB kinase complex. Science289, 1550–1554 (2000). This study reports on the identification of the NEMO binding domain (NMD) of IKK-β and the potential use of an NMD peptide to block activation of the NF-κB pathway. CASPubMed Google Scholar