Bile acid receptors as targets for drug development (original) (raw)
Hagey, L. R. et al. Ursodeoxycholic acid in the Ursidae: biliary bile acids of bears, pandas, and related carnivores. J. Lipid Res.34, 1911–1917 (1993). CASPubMed Google Scholar
Maton, P. N., Murphy, G. M. & Dowling, R. H. Ursodeoxycholic acid treatment of gallstones. Dose-response study and possible mechanism of action. Lancet2, 1297–1301 (1977). CASPubMed Google Scholar
Poupon, R. et al. Is ursodeoxycholic acid an effective treatment for primary biliary cirrhosis? Lancet1, 834–836 (1987). CASPubMed Google Scholar
Salen, G., Meriwether, T. W. & Nicolau, G. Chenodeoxycholic acid inhibits increased cholesterol and cholestanol synthesis in patients with cerebrotendinous xanthomatosis. Biochem. Med.14, 57–74 (1975). CASPubMed Google Scholar
Russell, D. W. The enzymes, regulation, and genetics of bile acid synthesis. Annu. Rev. Biochem.72, 137–174 (2003). CASPubMed Google Scholar
Ridlon, J. M., Kang, D. J. & Hylemon, P. B. Bile salt biotransformations by human intestinal bacteria. J. Lipid Res.47, 241–259 (2006). CASPubMed Google Scholar
Hofmann, A. F. Biliary secretion and excretion in health and disease: current concepts. Ann. Hepatol.6, 15–27 (2007). CASPubMed Google Scholar
Borgstrom, B., Dahlqvist, A., Lundh, G. & Sjovall, J. Studies of intestinal digestion and absorption in the human. J. Clin. Invest.36, 1521–1536 (1957). CASPubMedPubMed Central Google Scholar
Forman, B. M. et al. Identification of a nuclear receptor that is activated by farnesol metabolites. Cell81, 687–693 (1995). CASPubMed Google Scholar
Seol, W., Choi, H. S. & Moore, D. D. Isolation of proteins that interact specifically with the retinoid X receptor: two novel orphan receptors. Mol. Endocrinol.9, 72–85 (1995). CASPubMed Google Scholar
Shefer, S., Hauser, S., Bekersky, I. & Mosbach, E. H. Feedback regulation of bile acid biosynthesis in the rat. J. Lipid Res.10, 646–655 (1969). CASPubMed Google Scholar
Goodwin, B. et al. A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis. Mol. Cell6, 517–526 (2000). CASPubMed Google Scholar
Seol, W., Choi, H. S. & Moore, D. D. An orphan nuclear hormone receptor that lacks a DNA binding domain and heterodimerizes with other receptors. Science272, 1336–1339 (1996). CASPubMed Google Scholar
Inagaki, T. et al. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell. Metab.2, 217–225 (2005). CASPubMed Google Scholar
Huang, W. et al. Nuclear receptor-dependent bile acid signaling is required for normal liver regeneration. Science312, 233–236 (2006). CASPubMed Google Scholar
Inagaki, T. et al. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proc. Natl Acad. Sci. USA103, 3920–3925 (2006). CASPubMedPubMed Central Google Scholar
Alemi, F. et al. The receptor TGR5 mediates the prokinetic actions of intestinal bile acids and is required for normal defecation in mice. Gastroenterology144, 145–154 (2013). CASPubMed Google Scholar
Higuchi, H., Grambihler, A., Canbay, A., Bronk, S. F. & Gores, G. J. Bile acids up-regulate death receptor 5/TRAIL-receptor 2 expression via a c-Jun N.-terminal kinase-dependent pathway involving Sp1. J. Biol. Chem.279, 51–60 (2004). CASPubMed Google Scholar
Allen, K., Jaeschke, H. & Copple, B. L. Bile acids induce inflammatory genes in hepatocytes: a novel mechanism of inflammation during obstructive cholestasis. Am. J. Pathol.178, 175–186 (2011). CASPubMedPubMed Central Google Scholar
Baes, M. et al. A new orphan member of the nuclear hormone receptor superfamily that interacts with a subset of retinoic acid response elements. Mol. Cell Biol.14, 1544–1552 (1994). CASPubMedPubMed Central Google Scholar
Makishima, M. et al. Vitamin D receptor as an intestinal bile acid sensor. Science296, 1313–1316 (2002). CASPubMed Google Scholar
Choi, H. S. et al. Differential transactivation by two isoforms of the orphan nuclear hormone receptor CAR. J. Biol. Chem.272, 23565–23571 (1997). CASPubMed Google Scholar
Maruyama, T. et al. Identification of membrane-type receptor for bile acids (M-BAR). Biochem. Biophys. Res. Commun.298, 714–719 (2002). CASPubMed Google Scholar
Kawamata, Y. et al. A G protein-coupled receptor responsive to bile acids. J. Biol. Chem.278, 9435–9440 (2003). CASPubMed Google Scholar
Otte, K. et al. Identification of farnesoid X receptor beta as a novel mammalian nuclear receptor sensing lanosterol. Mol. Cell Biol.23, 864–872 (2003). CASPubMedPubMed Central Google Scholar
Zhang, Y., Kast-Woelbern, H. R. & Edwards, P. A. Natural structural variants of the nuclear receptor farnesoid X receptor affect transcriptional activation. J. Biol. Chem.278, 104–110 (2003). CASPubMed Google Scholar
Bookout, A. L. et al. Anatomical profiling of nuclear receptor expression reveals a hierarchical transcriptional network. Cell126, 789–799 (2006). CASPubMedPubMed Central Google Scholar
Li, Z., Kruijt, J. K., van der Sluis, R. J., Van Berkel, T. J. & Hoekstra, M. Nuclear receptor atlas of female mouse liver parenchymal, endothelial, and Kupffer cells. Physiol. Genomics45, 268–275 (2013). CASPubMed Google Scholar
Fickert, P. et al. Farnesoid X receptor critically determines the fibrotic response in mice but is expressed to a low extent in human hepatic stellate cells and periductal myofibroblasts. Am. J. Pathol.175, 2392–2405 (2009). CASPubMedPubMed Central Google Scholar
Bishop-Bailey, D., Walsh, D. T. & Warner, T. D. Expression and activation of the farnesoid X receptor in the vasculature. Proc. Natl Acad. Sci. USA101, 3668–3673 (2004). CASPubMedPubMed Central Google Scholar
Lee, H. et al. FXR regulates organic solute transporters α and β in the adrenal gland, kidney, and intestine. J. Lipid Res.47, 201–214 (2006). CASPubMed Google Scholar
Cariou, B. et al. The farnesoid X receptor modulates adiposity and peripheral insulin sensitivity in mice. J. Biol. Chem.281, 11039–11049 (2006). CASPubMed Google Scholar
Jiang, T. et al. Farnesoid X receptor modulates renal lipid metabolism, fibrosis, and diabetic nephropathy. Diabetes56, 2485–2493 (2007). CASPubMed Google Scholar
Abel, U. et al. Synthesis and pharmacological validation of a novel series of non-steroidal FXR agonists. Bioorg. Med. Chem. Lett.20, 4911–4917 (2010). CASPubMed Google Scholar
Sayin, S. I. et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-β-muricholic acid, a naturally occurring FXR antagonist. Cell. Metab.17, 225–235 (2013). CASPubMed Google Scholar
Beraza, N. et al. Nor-ursodeoxycholic acid reverses hepatocyte-specific nemo-dependent steatohepatitis. Gut60, 387–396 (2011). CASPubMed Google Scholar
Gardmo, C., Tamburro, A., Modica, S. & Moschetta, A. Proteomics for the discovery of nuclear bile acid receptor FXR targets. Biochim. Biophys. Acta1812, 836–841 (2011). CASPubMedPubMed Central Google Scholar
Jung, D. & Kullak-Ublick, G. A. Hepatocyte nuclear factor 1 α: a key mediator of the effect of bile acids on gene expression. Hepatology37, 622–631 (2003). CASPubMed Google Scholar
Jung, D., Mangelsdorf, D. J. & Meyer, U. A. Pregnane X receptor is a target of farnesoid X receptor. J. Biol. Chem.281, 19081–19091 (2006). CASPubMed Google Scholar
Inoue, J. et al. PPARα gene expression is up-regulated by LXR and PXR activators in the small intestine. Biochem. Biophys. Res. Commun.371, 675–678 (2008). CASPubMed Google Scholar
Renga, B. et al. Farnesoid X receptor suppresses constitutive androstane receptor activity at the multidrug resistance protein-4 promoter. Biochim. Biophys. Acta1809, 157–165 (2011). CASPubMed Google Scholar
Beilke, L. D. et al. Constitutive androstane receptor-mediated changes in bile acid composition contributes to hepatoprotection from lithocholic acid-induced liver injury in mice. Drug Metab. Dispos.37, 1035–1045 (2009). CASPubMedPubMed Central Google Scholar
Claudel, T., Staels, B. & Kuipers, F. The Farnesoid X receptor: a molecular link between bile acid and lipid and glucose metabolism. Arterioscler. Thromb. Vasc. Biol.25, 2020–2030 (2005). CASPubMed Google Scholar
Wang, Y. D., Chen, W. D., Moore, D. D. & Huang, W. FXR: a metabolic regulator and cell protector. Cell Res.18, 1087–1095 (2008). CASPubMed Google Scholar
Pircher, P. C. et al. Farnesoid X receptor regulates bile acid-amino acid conjugation. J. Biol. Chem.278, 27703–27711 (2003). CASPubMed Google Scholar
Ananthanarayanan, M., Balasubramanian, N., Makishima, M., Mangelsdorf, D. J. & Suchy, F. J. Human bile salt export pump promoter is transactivated by the farnesoid X receptor/bile acid receptor. J. Biol. Chem.276, 28857–28865 (2001). CASPubMed Google Scholar
Boyer, J. L. et al. Upregulation of a basolateral FXR-dependent bile acid efflux transporter OSTα-OSTβ in cholestasis in humans and rodents. Am. J. Physiol. Gastrointest. Liver Physiol.290, G1124–G1130 (2006). CASPubMed Google Scholar
Fiorucci, S. et al. The nuclear receptor SHP mediates inhibition of hepatic stellate cells by FXR and protects against liver fibrosis. Gastroenterology127, 1497–1512 (2004). CASPubMed Google Scholar
Kim, I. et al. Spontaneous hepatocarcinogenesis in farnesoid X receptor-null mice. Carcinogenesis28, 940–946 (2007). CASPubMed Google Scholar
Deuschle, U. et al. FXR controls the tumor suppressor NDRG2 and FXR agonists reduce liver tumor growth and metastasis in an orthotopic mouse xenograft model. PLoS ONE7, e43044 (2012). CASPubMedPubMed Central Google Scholar
Jiang, Y. et al. Farnesoid X receptor inhibits gankyrin in mouse livers and prevents development of liver cancer. Hepatology57, 1098–1106 (2013). CASPubMed Google Scholar
Wistuba, W., Gnewuch, C., Liebisch, G., Schmitz, G. & Langmann, T. Lithocholic acid induction of the FGF19 promoter in intestinal cells is mediated by PXR. World J. Gastroenterol.13, 4230–4235 (2007). CASPubMedPubMed Central Google Scholar
Schmidt, D. R. et al. Regulation of bile acid synthesis by fat-soluble vitamins A and D. J. Biol. Chem.285, 14486–14494 (2010). CASPubMedPubMed Central Google Scholar
Schreuder, T. C. et al. The hepatic response to FGF19 is impaired in patients with nonalcoholic fatty liver disease and insulin resistance. Am. J. Physiol. Gastrointest Liver Physiol.298, G440–G445 (2010). CASPubMed Google Scholar
Triantis, V., Saeland, E., Bijl, N., Oude-Elferink, R. P. & Jansen, P. L. Glycosylation of fibroblast growth factor receptor 4 is a key regulator of fibroblast growth factor 19-mediated down-regulation of cytochrome P450 7A1. Hepatology52, 656–666 (2010). CASPubMed Google Scholar
Wu, X. et al. Co-receptor requirements for fibroblast growth factor-19 signaling. J. Biol. Chem.282, 29069–29072 (2007). CASPubMed Google Scholar
Kir, S., Zhang, Y., Gerard, R. D., Kliewer, S. A. & Mangelsdorf, D. J. Nuclear receptors HNF4α and LRH-1 cooperate in regulating Cyp7a1 in vivo. J. Biol. Chem.287, 41334–41341 (2012). CASPubMedPubMed Central Google Scholar
Kim, I. et al. Differential regulation of bile acid homeostasis by the farnesoid X receptor in liver and intestine. J. Lipid Res.48, 2664–2672 (2007). CASPubMed Google Scholar
Potthoff, M. J. et al. FGF15/19 regulates hepatic glucose metabolism by inhibiting the CREB-PGC-1α pathway. Cell. Metab.13, 729–738 (2011). CASPubMedPubMed Central Google Scholar
Kir, S. et al. FGF19 as a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis. Science331, 1621–1624 (2011). CASPubMedPubMed Central Google Scholar
Miyata, M., Sakaida, Y., Matsuzawa, H., Yoshinari, K. & Yamazoe, Y. Fibroblast growth factor 19 treatment ameliorates disruption of hepatic lipid metabolism in farnesoid X receptor (Fxr)-null mice. Biol. Pharm. Bull.34, 1885–1889 (2011). CASPubMed Google Scholar
Choi, M. et al. Identification of a hormonal basis for gallbladder filling. Nat. Med.12, 1253–1255 (2006). CASPubMed Google Scholar
Drafahl, K. A., McAndrew, C. W., Meyer, A. N., Haas, M. & Donoghue, D. J. The receptor tyrosine kinase FGFR4 negatively regulates NF-κB signaling. PLoS ONE5, e14412 (2010). CASPubMedPubMed Central Google Scholar
Uriarte, I. et al. Identification of fibroblast growth factor 15 as a novel mediator of liver regeneration and its application in the prevention of post-resection liver failure in mice. Gut62, 899–910 (2013). CASPubMed Google Scholar
Zweers, S. J. et al. The human gallbladder secretes fibroblast growth factor 19 into bile: towards defining the role of fibroblast growth factor 19 in the enterobiliary tract. Hepatology55, 575–583 (2012). CASPubMed Google Scholar
Nicholes, K. et al. A mouse model of hepatocellular carcinoma: ectopic expression of fibroblast growth factor 19 in skeletal muscle of transgenic mice. Am. J. Pathol.160, 2295–2307 (2002). CASPubMedPubMed Central Google Scholar
Lin, B. C. & Desnoyers, L. R. FGF19 and cancer. Adv. Exp. Med. Biol.728, 183–194 (2012). CASPubMed Google Scholar
Wu, X. et al. Separating mitogenic and metabolic activities of fibroblast growth factor 19 (FGF19). Proc. Natl Acad. Sci. USA107, 14158–14163 (2010). CASPubMedPubMed Central Google Scholar
Keitel, V. et al. The membrane-bound bile acid receptor TGR5 is localized in the epithelium of human gallbladders. Hepatology50, 861–870 (2009). CASPubMed Google Scholar
Keitel, V. et al. The bile acid receptor TGR5 (Gpbar-1) acts as a neurosteroid receptor in brain. Glia58, 1794–1805 (2010). PubMed Google Scholar
Keitel, V. et al. The G.-protein coupled bile salt receptor TGR5 is expressed in liver sinusoidal endothelial cells. Hepatology45, 695–704 (2007). CASPubMed Google Scholar
Sato, H. et al. Anti-hyperglycemic activity of a TGR5 agonist isolated from Olea europaea. Biochem. Biophys. Res. Commun.362, 793–798 (2007). CASPubMed Google Scholar
Sato, H. et al. Novel potent and selective bile acid derivatives as TGR5 agonists: biological screening, structure-activity relationships, and molecular modeling studies. J. Med. Chem.51, 1831–1841 (2008). CASPubMed Google Scholar
Pols, T. W., Noriega, L. G., Nomura, M., Auwerx, J. & Schoonjans, K. The bile acid membrane receptor TGR5 as an emerging target in metabolism and inflammation. J. Hepatol.54, 1263–1272 (2011). CASPubMed Google Scholar
Pols, T. W. et al. TGR5 activation inhibits atherosclerosis by reducing macrophage inflammation and lipid loading. Cell. Metab.14, 747–757 (2011). CASPubMedPubMed Central Google Scholar
Wang, Y. D., Chen, W. D., Yu, D., Forman, B. M. & Huang, W. The G-protein-coupled bile acid receptor, Gpbar1 (TGR5), negatively regulates hepatic inflammatory response through antagonizing nuclear factor κ light-chain enhancer of activated B cells (NF-κB) in mice. Hepatology54, 1421–1432 (2011). CASPubMed Google Scholar
Katsuma, S., Hirasawa, A. & Tsujimoto, G. Bile acids promote glucagon-like peptide-1 secretion through TGR5 in a murine enteroendocrine cell line STC-1. Biochem. Biophys. Res. Commun.329, 386–390 (2005). CASPubMed Google Scholar
Watanabe, M. et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature439, 484–489 (2006). CASPubMed Google Scholar
Jansen, P. L. et al. Alterations of hormonally active fibroblast growth factors after Roux-en-Y gastric bypass surgery. Dig. Dis.29, 48–51 (2011). PubMed Google Scholar
Li, T. et al. The G protein-coupled bile acid receptor, TGR5, stimulates gallbladder filling. Mol. Endocrinol.25, 1066–1071 (2011). CASPubMedPubMed Central Google Scholar
Beuers, U. et al. The biliary HCO3− umbrella: a unifying hypothesis on pathogenetic and therapeutic aspects of fibrosing cholangiopathies. Hepatology52, 1489–1496 (2010). CASPubMed Google Scholar
Zhang, H. et al. Rat pregnane X receptor: molecular cloning, tissue distribution, and xenobiotic regulation. Arch. Biochem. Biophys.368, 14–22 (1999). CASPubMed Google Scholar
Kliewer, S. A. et al. An orphan nuclear receptor activated by pregnanes defines a novel steroid signaling pathway. Cell92, 73–82 (1998). CASPubMed Google Scholar
Lehmann, J. M. et al. The human orphan nuclear receptor PXR is activated by compounds that regulate CYP3A4 gene expression and cause drug interactions. J. Clin. Invest.102, 1016–1023 (1998). CASPubMedPubMed Central Google Scholar
Bertilsson, G. et al. Identification of a human nuclear receptor defines a new signaling pathway for CYP3A induction. Proc. Natl Acad. Sci. USA95, 12208–12213 (1998). CASPubMedPubMed Central Google Scholar
Lamba, V. et al. PXR (NR1I2): splice variants in human tissues, including brain, and identification of neurosteroids and nicotine as PXR activators. Toxicol. Appl. Pharmacol.199, 251–265 (2004). CASPubMed Google Scholar
Vogel, S. M. et al. Lithocholic acid is an endogenous inhibitor of MDM4 and MDM2. Proc. Natl Acad. Sci. USA109, 16906–16910 (2012). CASPubMedPubMed Central Google Scholar
Wang, Y. M., Ong, S. S., Chai, S. C. & Chen, T. Role of CAR and PXR in xenobiotic sensing and metabolism. Expert Opin. Drug Metab. Toxicol.8, 803–817 (2012). CASPubMedPubMed Central Google Scholar
Kast, H. R. et al. Regulation of multidrug resistance-associated protein 2 (ABCC2) by the nuclear receptors pregnane X receptor, farnesoid X-activated receptor, and constitutive androstane receptor. J. Biol. Chem.277, 2908–2915 (2002). CASPubMed Google Scholar
Ihunnah, C. A., Jiang, M. & Xie, W. Nuclear receptor PXR, transcriptional circuits and metabolic relevance. Biochim. Biophys. Acta1812, 956–963 (2011). CASPubMedPubMed Central Google Scholar
Wallace, K. et al. The PXR is a drug target for chronic inflammatory liver disease. J. Steroid Biochem. Mol. Biol.120, 137–148 (2010). CASPubMedPubMed Central Google Scholar
Li, T. & Chiang, J. Y. Mechanism of rifampicin and pregnane X receptor inhibition of human cholesterol 7 α-hydroxylase gene transcription. Am. J. Physiol. Gastrointest. Liver Physiol.288, G74–G84 (2005). CASPubMed Google Scholar
Cheng, J., Shah, Y. M. & Gonzalez, F. J. Pregnane X receptor as a target for treatment of inflammatory bowel disorders. Trends Pharmacol. Sci.33, 323–330 (2012). CASPubMedPubMed Central Google Scholar
Zhou, J. et al. Hepatic fatty acid transporter Cd36 is a common target of LXR, PXR, and PPARγ in promoting steatosis. Gastroenterology134, 556–567 (2008). CASPubMed Google Scholar
Jonker, J. W., Liddle, C. & Downes, M. FXR and PXR: potential therapeutic targets in cholestasis. J. Steroid Biochem. Mol. Biol.130, 147–158 (2012). CASPubMed Google Scholar
Norman, A. W. Minireview: vitamin D receptor: new assignments for an already busy receptor. Endocrinology147, 5542–5548 (2006). CASPubMed Google Scholar
Han, S. & Chiang, J. Y. Mechanism of vitamin D receptor inhibition of cholesterol 7α-hydroxylase gene transcription in human hepatocytes. Drug Metab. Dispos.37, 469–478 (2009). CASPubMed Google Scholar
Adachi, R. et al. Structural determinants for vitamin D receptor response to endocrine and xenobiotic signals. Mol. Endocrinol.18, 43–52 (2004). CASPubMed Google Scholar
Huhtakangas, J. A., Olivera, C. J., Bishop, J. E., Zanello, L. P. & Norman, A. W. The vitamin D receptor is present in caveolae-enriched plasma membranes and binds 1α,25(OH)2-vitamin D3 in vivo and in vitro. Mol. Endocrinol.18, 2660–2671 (2004). CASPubMed Google Scholar
Han, S., Li, T., Ellis, E., Strom, S. & Chiang, J. Y. A novel bile acid-activated vitamin D receptor signaling in human hepatocytes. Mol. Endocrinol.24, 1151–1164 (2010). CASPubMedPubMed Central Google Scholar
D'Aldebert, E. et al. Bile salts control the antimicrobial peptide cathelicidin through nuclear receptors in the human biliary epithelium. Gastroenterology136, 1435–1443 (2009). CASPubMed Google Scholar
Saini, S. P. et al. A novel constitutive androstane receptor-mediated and CYP3A-independent pathway of bile acid detoxification. Mol. Pharmacol.65, 292–300 (2004). CASPubMed Google Scholar
Chang, T. K. Activation of pregnane X receptor (PXR) and constitutive androstane receptor (CAR) by herbal medicines. AAPS J.11, 590–601 (2009). CASPubMedPubMed Central Google Scholar
Moore, L. B. et al. Pregnane X receptor (PXR), constitutive androstane receptor (CAR), and benzoate X receptor (BXR) define three pharmacologically distinct classes of nuclear receptors. Mol. Endocrinol.16, 977–986 (2002). CASPubMed Google Scholar
Miao, J., Fang, S., Bae, Y. & Kemper, J. K. Functional inhibitory cross-talk between constitutive androstane receptor and hepatic nuclear factor-4 in hepatic lipid/glucose metabolism is mediated by competition for binding to the DR1 motif and to the common coactivators, GRIP-1 and PGC-1α. J. Biol. Chem.281, 14537–14546 (2006). CASPubMed Google Scholar
Uppal, H. et al. Combined loss of orphan receptors PXR and CAR heightens sensitivity to toxic bile acids in mice. Hepatology41, 168–176 (2005). CASPubMed Google Scholar
Pellicciari, R. et al. 6α-ethyl-chenodeoxycholic acid (6-ECDCA), a potent and selective FXR agonist endowed with anticholestatic activity. J. Med. Chem.45, 3569–3572 (2002). CASPubMed Google Scholar
Pellicciari, R. et al. Discovery of 6α-ethyl-23(S)-methylcholic acid (S-EMCA, INT-777) as a potent and selective agonist for the TGR5 receptor, a novel target for diabesity. J. Med. Chem.52, 7958–7961 (2009). CASPubMed Google Scholar
Rizzo, G. et al. Functional characterization of the semisynthetic bile acid derivative INT-767, a dual farnesoid X receptor and TGR5 agonist. Mol. Pharmacol.78, 617–630 (2010). CASPubMedPubMed Central Google Scholar
Baghdasaryan, A. et al. Dual farnesoid X receptor/TGR5 agonist INT-767 reduces liver injury in the Mdr2−/− (Abcb4−/−) mouse cholangiopathy model by promoting biliary HCO3− output. Hepatology54, 1303–1312 (2011). CASPubMed Google Scholar
Adorini, L., Pruzanski, M. & Shapiro, D. Farnesoid X receptor targeting to treat nonalcoholic steatohepatitis. Drug Discov. Today17, 988–997 (2012). CASPubMed Google Scholar
Hartman, H. B. et al. Activation of farnesoid X receptor prevents atherosclerotic lesion formation in LDLR−/− and apoE−/− mice. J. Lipid Res.50, 1090–1100 (2009). CASPubMedPubMed Central Google Scholar
Mencarelli, A., Renga, B., Distrutti, E. & Fiorucci, S. Antiatherosclerotic effect of farnesoid X receptor. Am. J. Physiol. Heart Circ. Physiol.296, H272–H281 (2009). CASPubMed Google Scholar
Urizar, N. L. et al. A natural product that lowers cholesterol as an antagonist ligand for FXR. Science296, 1703–1706 (2002). CASPubMed Google Scholar
Zhang, Y. et al. FXR deficiency causes reduced atherosclerosis in Ldlr−/− mice. Arterioscler Thromb. Vasc Biol.26, 2316–2321 (2006). CASPubMed Google Scholar
Guo, G. L. et al. Effects of FXR in foam-cell formation and atherosclerosis development. Biochim. Biophys. Acta1761, 1401–1409 (2006). CASPubMedPubMed Central Google Scholar
Bennett, B. J. et al. Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation. Cell. Metab.17, 49–60 (2013). CASPubMedPubMed Central Google Scholar
Marinozzi, M. et al. Pyrazole[3,4-_e_][1 4]thiazepin-7-one derivatives as a novel class of farnesoid X receptor (FXR) agonists. Bioorg. Med. Chem.20, 3429–3445 (2012). CASPubMed Google Scholar
Herbert, M. R. et al. Synthesis and SAR of 2-aryl-3-aminomethylquinolines as agonists of the bile acid receptor TGR5. Bioorg. Med. Chem. Lett.20, 5718–5721 (2010). CASPubMed Google Scholar
Sakamoto, S. et al. Glucuronidation converting methyl 1-(3,4-dimethoxyphenyl)-3-(3-ethylvaleryl)-4-hydroxy-6, 7,8-trimethoxy-2-naphthoat e (S-8921) to a potent apical sodium-dependent bile acid transporter inhibitor, resulting in a hypocholesterolemic action. J. Pharmacol. Exp. Ther.322, 610–618 (2007). CASPubMed Google Scholar
Kobayashi, M. et al. Prevention and treatment of obesity, insulin resistance, and diabetes by bile acid-binding resin. Diabetes56, 239–247 (2007). CASPubMed Google Scholar
European Association for the Study of the Liver. EASL Clinical Practice Guidelines: management of cholestatic liver diseases. J. Hepatol.51, 237–267 (2009).
Beuers, U. et al. Tauroursodeoxycholic acid inserts the apical conjugate export pump, Mrp2, into canalicular membranes and stimulates organic anion secretion by protein kinase C-dependent mechanisms in cholestatic rat liver. Hepatology33, 1206–1216 (2001). CASPubMed Google Scholar
Garcia-Marin, J. J., Dumont, M., Corbic, M., de Couet, G. & Erlinger, S. Effect of acid-base balance and acetazolamide on ursodeoxycholate-induced biliary bicarbonate secretion. Am. J. Physiol.248, G20–G27 (1985). CASPubMed Google Scholar
Kurz, A. K., Graf, D., Schmitt, M., Vom Dahl, S. & Haussinger, D. Tauroursodesoxycholate-induced choleresis involves p38(MAPK) activation and translocation of the bile salt export pump in rats. Gastroenterology121, 407–419 (2001). CASPubMed Google Scholar
Gohlke, H., Schmitz, B., Sommerfeld, A., Reinehr, R. & Haussinger, D. α5 β1-integrins are sensors for tauroursodeoxycholic acid in hepatocytes. Hepatology57, 1117–1129 (2013). CASPubMed Google Scholar
Bouscarel, B., Fromm, H. & Nussbaum, R. Ursodeoxycholate mobilizes intracellular Ca2+ and activates phosphorylase a in isolated hepatocytes. Am. J. Physiol.264, G243–G251 (1993). CASPubMed Google Scholar
Wong, M. H., Oelkers, P., Craddock, A. L. & Dawson, P. A. Expression cloning and characterization of the hamster ileal sodium-dependent bile acid transporter. J. Biol. Chem.269, 1340–1347 (1994). CASPubMed Google Scholar
Mekjian, H. S., Phillips, S. F. & Hofmann, A. F. Colonic secretion of water and electrolytes induced by bile acids: perfusion studies in man. J. Clin. Invest.50, 1569–1577 (1971). CASPubMed Google Scholar
Harach, T. et al. TGR5 potentiates GLP-1 secretion in response to anionic exchange resins. Sci. Rep.2, 430 (2012). PubMedPubMed Central Google Scholar
Chen, L. et al. Inhibition of apical sodium-dependent bile acid transporter as a novel treatment for diabetes. Am. J. Physiol. Endocrinol. Metab.302, E68–E76 (2012). CASPubMed Google Scholar
Bhat, B. G. et al. Inhibition of ileal bile acid transport and reduced atherosclerosis in apoE−/− mice by SC-435. J. Lipid Res.44, 1614–1621 (2003). CASPubMed Google Scholar
Li, H. et al. Inhibition of ileal bile acid transport lowers plasma cholesterol levels by inactivating hepatic farnesoid X receptor and stimulating cholesterol 7 α-hydroxylase. Metabolism53, 927–932 (2004). CASPubMed Google Scholar
Insull, W. Jr et al. Effectiveness of colesevelam hydrochloride in decreasing LDL cholesterol in patients with primary hypercholesterolemia: a 24-week randomized controlled trial. Mayo Clin. Proc.76, 971–982 (2001). CASPubMed Google Scholar
Hansen, M. et al. Effect of bile acid sequestrants on glycaemic control: protocol for a systematic review with meta-analysis of randomised controlled trials. BMJ Open2, e001803 (2012). PubMedPubMed Central Google Scholar
US National Library of Medicine. ClinicalTrials.gov[online], (2012).
US National Library of Medicine. ClinicalTrials.gov[online], (2013).
US National Library of Medicine. ClinicalTrials.gov[online], (2012).
Schaap, F. G., van der Gaag, N. A., Gouma, D. J. & Jansen, P. L. High expression of the bile salt-homeostatic hormone fibroblast growth factor 19 in the liver of patients with extrahepatic cholestasis. Hepatology49, 1228–1235 (2009). CASPubMed Google Scholar
Fickert, P. et al. Regurgitation of bile acids from leaky bile ducts causes sclerosing cholangitis in Mdr2 (Abcb4) knockout mice. Gastroenterology127, 261–274 (2004). CASPubMed Google Scholar
Fiorucci, S. et al. Farnesoid X receptor agonist for the treatment of liver and metabolic disorders: focus on 6-ethyl-CDCA. Mini Rev. Med. Chem.11, 753–762 (2011). CASPubMed Google Scholar
Kremer, A. E. et al. Lysophosphatidic acid is a potential mediator of cholestatic pruritus. Gastroenterology139, 1008–1018 (2010). CASPubMed Google Scholar
Kremer, A. E. et al. Serum autotaxin is increased in pruritus of cholestasis, but not of other origin, and responds to therapeutic interventions. Hepatology56, 1391–1400 (2012). CASPubMed Google Scholar
Alemi, F. et al. The TGR5 receptor mediates bile acid-induced itch and analgesia. J. Clin. Invest.123, 1513–1530 (2013). CASPubMedPubMed Central Google Scholar
Gadaleta, R. M. et al. Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease. Gut60, 463–472 (2011). CASPubMed Google Scholar
Terjung, B. et al. p-ANCAs in autoimmune liver disorders recognise human β-tubulin isotype 5 and cross-react with microbial protein FtsZ. Gut59, 808–816 (2010). CASPubMed Google Scholar
Wong, B. S. et al. Increased bile acid biosynthesis is associated with irritable bowel syndrome with diarrhea. Clin. Gastroenterol. Hepatol.10, 1009–1015 e3 (2012). CASPubMedPubMed Central Google Scholar
Mudaliar, S. et al. Efficacy and safety of the farnesoid X receptor agonist obeticholic acid in patients with type 2 diabetes and nonalcoholic fatty liver disease. Gastroenterologyhttp://dx.doi.org/10.1053/j.gastro.2013.05.042.
Wang, X. X. et al. Diabetic nephropathy is accelerated by farnesoid X receptor deficiency and inhibited by farnesoid X receptor activation in a type 1 diabetes model. Diabetes59, 2916–2927 (2010). CASPubMedPubMed Central Google Scholar
Peterli, R. et al. Improvement in glucose metabolism after bariatric surgery: comparison of laparoscopic Roux-en-Y gastric bypass and laparoscopic sleeve gastrectomy: a prospective randomized trial. Ann. Surg.250, 234–241 (2009). PubMed Google Scholar
van Dijk, R., Kremer, A. F., Enemuo, V., Jansen, P. L., Beuers, U. Clinical and molecular aspects of rifampicin-mediated attenuation of severe persistent hepatocellular secretory failure. Hepatology56, 549A (2012). Google Scholar
Ohkubo, H., Okuda, K. & Iida, S. Effects of corticosteroids on bilirubin metabolism in patients with Gilbert's syndrome. Hepatology1, 168–172 (1981). CASPubMed Google Scholar
Arias, I. M., Gartner, L. M., Cohen, M., Ezzer, J. B. & Levi, A. J. Chronic nonhemolytic unconjugated hyperbilirubinemia with glucuronyl transferase deficiency. Clinical, biochemical, pharmacologic and genetic evidence for heterogeneity. Am. J. Med.47, 395–409 (1969). CASPubMed Google Scholar
Ellis, E. et al. Successful treatment of severe unconjugated hyperbilirubinemia via induction of UGT1A1 by rifampicin. J. Hepatol.44, 243–245 (2006). PubMed Google Scholar
Makishima, M. et al. Identification of a nuclear receptor for bile acids. Science284, 1362–1365 (1999). CASPubMed Google Scholar
Downes, M. et al. A chemical, genetic, and structural analysis of the nuclear bile acid receptor FXR. Mol. Cell11, 1079–1092 (2003). CASPubMedPubMed Central Google Scholar
Hambruch, E. et al. Synthetic farnesoid X receptor agonists induce high-density lipoprotein-mediated transhepatic cholesterol efflux in mice and monkeys and prevent atherosclerosis in cholesteryl ester transfer protein transgenic low-density lipoprotein receptor(−/−) mice. J. Pharmacol. Exp. Ther.343, 556–567 (2012). CASPubMed Google Scholar
Flatt, B. et al. Discovery of XL335 (WAY-362450), a highly potent, selective, and orally active agonist of the farnesoid X receptor (FXR). J. Med. Chem.52, 904–907 (2009). CASPubMed Google Scholar
Soisson, S. M. et al. Identification of a potent synthetic FXR agonist with an unexpected mode of binding and activation. Proc. Natl Acad. Sci. USA105, 5337–5342 (2008). CASPubMedPubMed Central Google Scholar
Bass, J. Y. et al. Conformationally constrained farnesoid X receptor (FXR) agonists: heteroaryl replacements of the naphthalene. Bioorg. Med. Chem. Lett.21, 1206–1213 (2011). CASPubMed Google Scholar
Chen, W. D. et al. Farnesoid X receptor alleviates age-related proliferation defects in regenerating mouse livers by activating forkhead box m1b transcription. Hepatology51, 953–962 (2010). CASPubMed Google Scholar
Hollman, D. A., Milona, A., van Erpecum, K. J. & van Mil, S. W. Anti-inflammatory and metabolic actions of FXR: insights into molecular mechanisms. Biochim. Biophys. Acta1821, 1443–1452 (2012). CASPubMed Google Scholar
Staudinger, J. L. et al. The nuclear receptor PXR is a lithocholic acid sensor that protects against liver toxicity. Proc. Natl Acad. Sci. USA98, 3369–3374 (2001). CASPubMedPubMed Central Google Scholar
Jones, S. A. et al. The pregnane X receptor: a promiscuous xenobiotic receptor that has diverged during evolution. Mol. Endocrinol.14, 27–39 (2000). CASPubMed Google Scholar
Moore, L. B. et al. St. John's wort induces hepatic drug metabolism through activation of the pregnane X receptor. Proc. Natl Acad. Sci. USA97, 7500–7502 (2000). CASPubMedPubMed Central Google Scholar
Ogura, M. et al. Vitamin D3 modulates the expression of bile acid regulatory genes and represses inflammation in bile duct-ligated mice. J. Pharmacol. Exp. Ther.328, 564–570 (2009). CASPubMed Google Scholar
Ma, Y. et al. Identification and characterization of noncalcemic, tissue-selective, nonsecosteroidal vitamin D receptor modulators. J. Clin. Invest.116, 892–904 (2006). CASPubMedPubMed Central Google Scholar
Maglich, J. M. et al. Nuclear pregnane x receptor and constitutive androstane receptor regulate overlapping but distinct sets of genes involved in xenobiotic detoxification. Mol. Pharmacol.62, 638–646 (2002). CASPubMed Google Scholar
Gao, J. & Xie, W. Targeting xenobiotic receptors PXR and CAR for metabolic diseases. Trends Pharmacol. Sci.33, 552–558 (2012). CASPubMedPubMed Central Google Scholar