Structure and signalling in the IL-17 receptor family (original) (raw)
Mosmann, T. R., Cherwinski, H., Bond, M. W., Giedlin, M. A. & Coffman, R. L. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol.136, 2348–2357 (1986). CASPubMed Google Scholar
Gor, D. O., Rose, N. R. & Greenspan, N. S. TH1–TH2: a procrustean paradigm. Nature Immunol.4, 503–505 (2003). ArticleCAS Google Scholar
Steinman, L. A brief history of TH17, the first major revision in the T H1/TH2 hypothesis of T cell-mediated tissue damage. Nature Med.13, 139–145 (2007). This review article outlines the history of discrepancies in the TH1–TH2 cell paradigm, presented as a 'cautionary tale' of the process of scientific inquiry. ArticleCASPubMed Google Scholar
Oppmann, B. et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity13, 715–725 (2000). ArticleCASPubMed Google Scholar
Aggarwal, S., Ghilardi, N., Xie, M. H., De Sauvage, F. J. & Gurney, A. L. Interleukin 23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin 17. J. Biol. Chem.3, 1910–1914 (2002). Google Scholar
Infante-Duarte, C., Horton, H. F., Byrne, M. C. & Kamradt, T. Microbial lipopeptides induce the production of IL-17 in Th cells. J. Immunol.165, 6107–6115 (2000). ArticleCASPubMed Google Scholar
Cua, D. J. et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature421, 744–748 (2003). ArticleCASPubMed Google Scholar
Ghilardi, N. & Ouyang, W. Targeting the development and effector functions of Th17 cells. Semin. Immunol.19, 383–393 (2007). ArticleCASPubMed Google Scholar
O'Quinn, D., Palmer, M., Lee, Y. & Weaver, C. Emergence of the Th17 pathway and its role in host defense. Adv. Immunol.99, 115–163 (2008). ArticleCASPubMed Google Scholar
McGeachy, M. J. & Cua, D. J. Th17 cell differentiation: the long and winding road. Immunity28, 445–453 (2008). ArticleCASPubMed Google Scholar
Yu, J. & Gaffen, S. L. Interleukin-17: a novel inflammatory cytokine that bridges innate and adaptive immunity. Front. Biosci.13, 170–177 (2008). ArticleCASPubMed Google Scholar
Rouvier, E., Luciani, M.-F., Mattei, M.-G., Denizot, F. & Golstein, P. CTLA-8, cloned from an activated T cell, bearing AU-rich messenger RNA instability sequences, and homologous to a herpesvirus saimiri gene. J. Immunol.150, 5445–5456 (1993). CASPubMed Google Scholar
Yao, Z. et al. Herpesvirus Saimiri encodes a new cytokine, IL-17, which binds to a novel cytokine receptor. Immunity3, 811–821 (1995). This report describes the cloning of the first IL-17R family member, and is the first to show a role for NF-κB in IL-17-induced signal transduction. ArticleCASPubMed Google Scholar
Fossiez, F. et al. T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J. Exp. Med.183, 2593–2603 (1996). ArticleCASPubMed Google Scholar
Hymowitz, S. G. et al. IL-17s adopt a cystine knot fold: structure and activity of a novel cytokine, IL-17F, and implications for receptor binding. Embo J.20, 5332–5341 (2001). ArticleCASPubMedPubMed Central Google Scholar
Tsutsui, S., Nakamura, O. & Watanabe, T. Lamprey (Lethenteron japonicum) IL-17 upregulated by LPS-stimulation in the skin cells. Immunogenetics59, 873–882 (2007). ArticleCASPubMed Google Scholar
Wright, J. F. et al. Identification of an interleukin 17F/17A heterodimer in activated human CD4+ T cells. J. Biol. Chem.282, 13447–13455 (2007). ArticleCASPubMed Google Scholar
Chang, S. H. & Dong, C. A novel heterodimeric cytokine consisting of IL-17 and IL-17F regulates inflammatory responses. Cell Res.17, 435–440 (2007). ArticlePubMedCAS Google Scholar
Wright, J. F. et al. The human IL-17F/IL-17A heterodimeric cytokine signals through the IL-17RA/IL-17RC receptor complex. J. Immunol.181, 2799–2805 (2008). ArticleCASPubMed Google Scholar
Kuestner, R. et al. Identification of the IL-17 receptor related molecule, IL-17RC, as the receptor for IL-17F. J. Immunol.179, 5462–5473 (2007). This report shows that IL-17RC binds with high affinity to IL-17F. This is also the first functional analysis of different splice forms of any IL-17R family member. ArticleCASPubMed Google Scholar
Ishigame, H. et al. Differential roles of interleukin-17A and -17F in host defense against mucoepithelial bacterial infection and allergic responses. Immunity30, 108–119 (2009). This report is the first to directly compareIl17a−/−andIl17f−/−mice and to show that these cytokines have markedly different functionsin vivo. ArticleCASPubMed Google Scholar
Gaffen, S. L., Kramer, J. M., Yu, J. J. & Shen, F. in Vitamins and Hormones Vol. 74. (ed. G. Litwack) 255–282 (Academic, London, 2006). Google Scholar
McAllister, F. et al. Role of IL-17A, IL-17F, and the IL-17 receptor in regulating growth-related oncogene-α and granulocyte colony-stimulating factor in bronchial epithelium: implications for airway inflammation in cystic fibrosis. J. Immunol.175, 404–412 (2005). ArticleCASPubMed Google Scholar
Claudio, E. et al. The adaptor protein CIKS/Act1 is essential for IL-25-mediated allergic airway inflammation. J. Immunol.182, 1617–1630 (2009). ArticleCASPubMed Google Scholar
Rickel, E. A. et al. Identification of functional roles for both IL-17RB and IL-17RA in mediating IL-25-induced activities. J. Immunol.181, 4299–4310 (2008). This is the first report indicating that IL-17RA functions as a shared receptor signalling subunit for IL-17E and is required for its functionin vivo . ArticleCASPubMed Google Scholar
Shi, Y. et al. A novel cytokine receptor–ligand pair. Identification, molecular characterization, and in vivo immunomodulatory activity. J. Biol. Chem.275, 19167–19176 (2000). ArticleCASPubMed Google Scholar
Yamaguchi, Y. et al. IL-17B and IL-17C are associated with TNF-α production and contribute to the exacerbation of inflammatory arthritis. J. Immunol.179, 7128–7136 (2007). ArticleCASPubMed Google Scholar
Hurst, S. D. et al. New IL-17 family members promote Th1 or Th2 responses in the lung: in vivo function of the novel cytokine IL-25. J. Immunol.169, 443–453 (2002). ArticleCASPubMed Google Scholar
Li, H. et al. Cloning and characterization of IL-17B and IL-17C, two new members of the IL-17 family. Proc. Natl Acad. Sci. USA97, 773–778 (2000). ArticleCASPubMedPubMed Central Google Scholar
Starnes, T. et al. Cutting edge: IL-17F, a novel cytokine selectively expressed in activated T cells and monocytes, regulates angiogenesis and endothelial cell cytokine production. J. Immunol.167, 4137–4140 (2001). ArticleCASPubMed Google Scholar
Aggarwal, S. & Gurney, A. L. IL-17: a prototype member of an emerging family. J. Leukoc. Biol.71, 1–8 (2002). CASPubMed Google Scholar
Yao, Z. et al. Cutting edge: human IL-17: a novel cytokine derived from T cells. J. Immunol.155, 5483–5486 (1995). CASPubMed Google Scholar
Toy, D. et al. Cutting edge: interleukin-17 signals through a heteromeric receptor complex. J. Immunol.177, 36–39 (2006). This report is the first to show that IL-17RC is required for IL-17A-mediated signalling. ArticleCASPubMed Google Scholar
Rong, Z. et al. IL-17RD (Sef or IL-17RLM) interacts with IL-17 receptor and mediates IL-17 signaling. Cell Res.19, 208–215 (2008). ArticleCAS Google Scholar
Ozaki, K. & Leonard, W. J. Cytokine and cytokine receptor pleiotropy and redundancy. J. Biol. Chem.277, 29355–29358 (2002). ArticleCASPubMed Google Scholar
Shen, F. & Gaffen, S. L. Structure–function relationships in the IL-17 receptor: implications for signal transduction and therapy. Cytokine41, 92–104 (2008). ArticleCASPubMedPubMed Central Google Scholar
Hsu, H. C. et al. Interleukin 17-producing T helper cells and interleukin 17 orchestrate autoreactive germinal center development in autoimmune BXD2 mice. Nature Immunol.9, 166–175 (2008). ArticleCAS Google Scholar
Lindemann, M. J., Hu, Z., Benczik, M., Liu, K. D. & Gaffen, S. L. Differential regulation of the IL-17 receptor by γ-c cytokines: inhibitory signaling by the phosphatidylinositol 3-kinase pathway. J. Biol. Chem.283, 14100–14108 (2008). ArticleCASPubMedPubMed Central Google Scholar
Shen, F., Hu, Z., Goswami, J. & Gaffen, S. L. Identification of common transcriptional regulatory elements in interleukin-17 target genes. J. Biol. Chem.281, 24138–24148 (2006). ArticleCASPubMed Google Scholar
Maitra, A. et al. Distinct functional motifs within the IL-17 receptor regulate signal transduction and target gene expression. Proc. Natl Acad. Sci USA104, 7506–7511 (2007). This is the first detailed mutagenesis study of IL-17RA; it reveals a functional role for the SEFIR domain and includes the first description of the TILL domain and CBAD, which seem to be unique to IL-17RA. ArticleCASPubMedPubMed Central Google Scholar
Chan, F. K. Three is better than one: pre-ligand receptor assembly in the regulation of TNF receptor signaling. Cytokine37, 101–107 (2007). ArticleCASPubMedPubMed Central Google Scholar
Kramer, J. et al. Cutting edge: identification of the pre-ligand assembly domain (PLAD) and ligand binding site in the IL-17 receptor. J. Immunol.179, 6379–6383 (2007). ArticleCASPubMed Google Scholar
Kramer, J. et al. Cutting edge: evidence for ligand-independent multimerization of the IL-17 receptor. J. Immunol.176, 711–715 (2006). ArticleCASPubMed Google Scholar
Kramer, J. & Gaffen, S. Interleukin-17: a new paradigm in inflammation, autoimmunity and therapy. J. Periodontol.78, 1083–1093 (2007). ArticlePubMed Google Scholar
You, Z. et al. Interleukin-17 receptor-like gene is a novel antiapoptotic gene highly expressed in androgen-independent prostate cancer. Cancer Res.66, 175–183 (2006). ArticleCASPubMed Google Scholar
Remy, I., Wilson, I. A. & Michnick, S. W. Erythropietin receptor activation by a ligand-induced conformation change. Science283, 990–993 (1999). ArticleCASPubMed Google Scholar
Deng, G. M., Zheng, L., Chan, F. K. & Lenardo, M. Amelioration of inflammatory arthritis by targeting the pre-ligand assembly domain of tumor necrosis factor receptors. Nature Med.11, 1066–1072 (2005). ArticleCASPubMed Google Scholar
Shen, F., Ruddy, M. J., Plamondon, P. & Gaffen, S. L. Cytokines link osteoblasts and inflammation: microarray analysis of interleukin-17- and TNF-α-induced genes in bone cells. J. Leukoc. Biol.77, 388–399 (2005). ArticleCASPubMed Google Scholar
Park, H. et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nature Immunol.6, 1133–1141 (2005). ArticleCAS Google Scholar
Ruddy, M. J. et al. Functional cooperation between interleukin-17 and tumor necrosis factor-α is mediated by CCAAT/enhancer binding protein family members. J. Biol. Chem.279, 2559–2567 (2004). This is the first paper to show a role for C/EBP proteins in IL-17-induced signalling. ArticleCASPubMed Google Scholar
Awane, M., Andres, P. G., Li, D. J. & Reinecker, H. C. NF-κB-inducing kinase is a common mediator of IL-17-, TNF-α-, and IL-1 β-induced chemokine promoter activation in intestinal epithelial cells. J. Immunol.162, 5337–5344 (1999). CASPubMed Google Scholar
Yamazaki, S., Muta, T., Matsuo, S. & Takeshige, K. Stimulus-specific induction of a novel nuclear factor-κB regulator, IκB-ζ, via Toll/Interleukin-1 receptor is mediated by mRNA stabilization. J. Biol. Chem.280, 1678–1687 (2005). ArticleCASPubMed Google Scholar
Schwandner, R., Yamaguchi, K. & Cao, Z. Requirement of tumor necrosis factor-associated factor (TRAF)6 in interleukin 17 signal transduction. J. Exp. Med.191, 1233–1239 (2000). ArticleCASPubMedPubMed Central Google Scholar
Chang, S. H., Park, H. & Dong, C. Act1 adaptor protein is an immediate and essential signaling component of interleukin-17 receptor. J. Biol. Chem.281, 35603–35607 (2006). ArticleCASPubMed Google Scholar
Novatchkova, M., Leibbrandt, A., Werzowa, J., Neubuser, A. & Eisenhaber, F. The STIR-domain superfamily in signal transduction, development and immunity. Trends Biochem. Sci.28, 226–229 (2003). This is a groundbreaking bioinformatic analysis describing the SEFIR domain, a motif that is found in members of the IL-17R family and in ACT1 and that is homologous to TIR domains. ArticleCASPubMed Google Scholar
Toshchakov, V. & Vogel, S. Cell-penetrating TIR BB loop decoy peptides: A novel class of TLR signaling inhibitors and a tool to study topology of TIR–TIR interactions. Expt. Op. Biol. Ther.7, 1035–1050 (2007). ArticleCAS Google Scholar
Shen, F. et al. IL-17 receptor signaling inhibits C/EBPβ by sequential phosphorylation of the regulatory 2 domain. Sci. Signal.2, ra8 (2009). ArticlePubMedPubMed Central Google Scholar
Linden, A. A role for the cytoplasmic adaptor proteins Act1 in mediating IL-17 signaling. Sci. STKE2007, re4 (2007). ArticlePubMed Google Scholar
Qian, Y. et al. The adaptor Act1 is required for interleukin 17-dependent signaling associated with autoimmune and inflammatory disease. Nature Immunol.8, 247–256 (2007). This study, together with reference 58, is the first to show that ACT1 binds to IL-17RA and is required for downstream signalling. ArticleCAS Google Scholar
Wolf, K., Plano, G. V. & Fields, K. A. A protein secreted by the respiratory pathogen Chlamydia pneumoniae impairs IL-17 signaling via interaction with human Act1. Cell. Microbiol.11, 769–779 (2009). ArticleCASPubMedPubMed Central Google Scholar
Anderson, P. Post-transcriptional control of cytokine production. Nature Immunol.9, 353–359 (2008). ArticleCAS Google Scholar
Hartupee, J. et al. IL-17 signaling for mRNA stabilization does not require TNF receptor-associated factor 6. J. Immunol.182, 1660–1666 (2009). ArticleCASPubMed Google Scholar
Matsushita, K. et al. Zc3h12a is an RNase essential for controlling immune responses by regulating mRNA decay. Nature458, 1185–1190 (2009). ArticleCASPubMed Google Scholar
Litvak, V. et al. Function of C/EBPδ in a regulatory circuit that discriminates between transient and persistent TLR4-induced signals. Nature Immunol.10, 437–443 (2009). ArticleCAS Google Scholar
Tang, Q. Q. et al. Sequential phosphorylation of CCAAT enhancer-binding protein β by MAPK and glycogen synthase kinase 3β is required for adipogenesis. Proc. Natl Acad. Sci. USA102, 9766–9771 (2005). ArticleCASPubMedPubMed Central Google Scholar
Miossec, P. Interleukin-17 in rheumatoid arthritis: if T cells were to contribute to inflammation and destruction through synergy. Arthritis Rheum.48, 594–601 (2003). ArticleCASPubMed Google Scholar
Hartupee, J., Liu, C., Novotny, M., Li, X. & Hamilton, T. IL-17 enhances chemokine gene expression through mRNA stabilization. J. Immunol.179, 4135–4141 (2007). ArticleCASPubMed Google Scholar
Huang, F. et al. Requirement for both JAK-mediated PI3K signaling and ACT1/TRAF6/TAK1-dependent NF-κB activation by IL-17A in enhancing cytokine expression in human airway epithelial cells. J. Immunol.179, 6504–6513 (2007). ArticleCASPubMed Google Scholar
Kim, K. W. et al. Increased interleukin-17 production via a phosphoinositide 3-kinase/Akt and nuclear factor κB-dependent pathway in patients with rheumatoid arthritis. Arthritis Res. Ther.7, R139–R148 (2005). ArticleCASPubMed Google Scholar
Rong, Z. et al. Interleukin-17F signaling requires ubiquitination of interleukin-17 receptor via TRAF6. Cell Signal.19, 1514–1520 (2007). ArticleCASPubMed Google Scholar
Zheng, Y. et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nature Med.14, 282–289 (2008). ArticleCASPubMed Google Scholar
Haudenschild, D., Moseley, T., Rose, L. & Reddi, A. H. Soluble and transmembrane isoforms of novel interleukin-17 receptor-like protein by RNA splicing and expression in prostate cancer. J. Biol. Chem.277, 4309–4316 (2002). ArticleCASPubMed Google Scholar
Haudenschild, D. R., Curtiss, S. B., Moseley, T. A. & Reddi, A. H. Generation of interleukin-17 receptor-like protein (IL-17RL) in prostate by alternative splicing of RNA. Prostate66, 1268–1274 (2006). ArticleCASPubMed Google Scholar
Lee, J. et al. IL-17E, a novel proinflammatory ligand for the IL-17 receptor homolog IL-17Rh1. J. Biol. Chem.276, 1660–1664 (2001). ArticleCASPubMed Google Scholar
Moseley, T. A., Haudenschild, D. R., Rose, L. & Reddi, A. H. Interleukin-17 family and IL-17 receptors. Cytokine Growth Factor Rev.14, 155–174 (2003). ArticleCASPubMed Google Scholar
Maezawa, Y. et al. Involvement of TNF receptor-associated factor 6 in IL-25 receptor signaling. J. Immunol.176, 1013–1018 (2006). ArticleCASPubMed Google Scholar
Swaidani, S. et al. The critical role of epithelial-derived Act1 in IL-17- and IL-25-mediated pulmonary inflammation. J. Immunol.182, 1631–1640 (2009). ArticleCASPubMed Google Scholar
Pancer, Z., Mayer, W. E., Klein, J. & Cooper, M. D. Prototypic T cell receptor and CD4-like coreceptor are expressed by lymphocytes in the agnathan sea lamprey. Proc. Natl Acad. Sci USA101, 13273–13278 (2004). ArticleCASPubMedPubMed Central Google Scholar
Tsang, M., Friesel, R., Kudoh, T. & Dawid, I. Identification of Sef, a novel modulator of FGF signalling. Nature Cell Biol.4, 165–169 (2002). ArticleCASPubMed Google Scholar
Yang, R. B. et al. A novel interleukin-17 receptor-like protein identified in human umbilical vein endothelial cells antagonizes basic fibroblast growth factor-induced signaling. J. Biol. Chem.278, 33232–33238 (2003). ArticleCASPubMed Google Scholar
Xiong, S. et al. hSef inhibits PC-12 cell differentiation by interfering with Ras–mitogen-activated protein kinase MAPK signaling. J. Biol. Chem.278, 50273–50282 (2003). ArticleCASPubMed Google Scholar
Preger, E. et al. Alternative splicing generates an isoform of the human Sef gene with altered subcellular localization and specificity. Proc. Natl Acad. Sci. USA101, 1229–1234 (2004). ArticleCASPubMedPubMed Central Google Scholar
Yang, X. et al. Sef interacts with TAK1 and mediates JNK activation and apoptosis. J. Biol. Chem.279, 38099–38102 (2004). ArticleCASPubMed Google Scholar
Li, T. S., Li, X. N., Chang, Z. J., Fu, X. Y. & Liu, L. Identification and functional characterization of a novel interleukin 17 receptor: a possible mitogenic activation through ras/mitogen-activated protein kinase signaling pathway. Cell Signal.18, 1287–1298 (2006). ArticlePubMedCAS Google Scholar
McInnes, I. B. & Schett, G. Cytokines in the pathogenesis of rheumatoid arthritis. Nature Rev. Immunol.7, 429–442 (2007). ArticleCAS Google Scholar
Kikly, K., Liu, L., Na, S. & Sedgwick, J. D. The IL-23/Th17 axis: therapeutic targets for autoimmune inflammation. Curr. Opin. Immunol.18, 670–675 (2006). ArticleCASPubMed Google Scholar
Lubberts, E. IL-17/Th17 targeting: on the road to prevent chronic destructive arthritis? Cytokine41, 84–91 (2008). ArticleCASPubMed Google Scholar
Ye, P. et al. Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J. Exp. Med194, 519–527 (2001). ArticleCASPubMedPubMed Central Google Scholar
Chabaud, M., Lubberts, E., Joosten, L., van Den Berg, W. & Miossec, P. IL-17 derived from juxta-articular bone and synovium contributes to joint degradation in rheumatoid arthritis. Arthritis Res.3, 168–177 (2001). ArticleCASPubMedPubMed Central Google Scholar
Lubberts, E. et al. IL-1-independent role of IL-17 in synovial inflammation and joint destruction during collagen-induced arthritis. J. Immunol.167, 1004–1013 (2001). ArticleCASPubMed Google Scholar
Murphy, C. A. et al. Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J. Exp. Med198, 1951–1957 (2003). ArticleCASPubMedPubMed Central Google Scholar
Harrington, L. E. et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nature Immunol.6, 1123–1132 (2005). ArticleCAS Google Scholar
Langrish, C. L. et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med201, 233–240 (2005). ArticleCASPubMedPubMed Central Google Scholar
Duerr, R. H. et al. A Genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science314, 1461–1463 (2006). ArticleCASPubMedPubMed Central Google Scholar
Veldhoen, M., Hocking, R. J., Atkins, C. J., Locksley, R. M. & Stockinger, B. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity24, 179–189 (2006). ArticleCASPubMed Google Scholar
Mangan, P. R. et al. Transforming growth factor-β induces development of the T H17 lineage. Nature441, 231–234 (2006). ArticleCASPubMed Google Scholar
Bettelli, E. et al. Reciprocal developmental pathways for the generation of pathogenic effector T H17 and regulatory T cells. Nature441, 235–238 (2006). ArticleCASPubMed Google Scholar
Ivanov, I. et al. The orphan nuclear receptor RORγT directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell126, 1121–1133 (2006). ArticleCASPubMed Google Scholar
Liang, S. C. et al. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J. Exp. Med203, 2271–2279 (2006). ArticleCASPubMedPubMed Central Google Scholar
Nurieva, R. et al. Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature448, 480–483 (2007). ArticleCASPubMed Google Scholar
Zhou, L. et al. IL-6 programs T H-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nature Immunol.8, 967–974 (2007). ArticleCAS Google Scholar
Milner, J. D. et al. Impaired T H17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature452, 773–776 (2008). ArticleCASPubMedPubMed Central Google Scholar