Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex (original) (raw)

References

  1. Somogyi, P., Tamas, G., Lujan, R. & Buhl, E. H. Salient features of synaptic organisation in the cerebral cortex. Brain Res. Brain Res. Rev. 26, 113–135 (1998).
    CAS PubMed Google Scholar
  2. Ramón y Cajal, S. Textura del sistema nervioso del hombre y de los vertebrados (Moya, Madrid, 1899). English translation: Histology of the Nervous System of Man and Vertebrates (Oxford Univ. Press, New York, 1995)
    Google Scholar
  3. Lorente de Nó, R. La corteza cerebral de ratón. (Primera contribución - La corteza acústica). Trabajos del Laboratorio de Investigaciones Biológicas de la Universidad de Madrid 20, 41–78 (1922). English translation: Fairén, A., Regidor, J. & Kruger, L. The cerebral cortex of the mouse (a first contribution - the “acoustic” cortex). Somatosens. Mot. Res. 9, 3–36 (1992).
    Google Scholar
  4. Szentagóthai, J. The neuron network of the cerebral cortex: a functional interpretation. Proc. R. Soc. Lond. B Biol. Sci. 201, 219–248 (1978).
    PubMed Google Scholar
  5. Fairén, A., DeFelipe, J. & Regidor, J. in Cerebral Cortex vol. 1 Cellular Components of the Cerebral Cortex (eds, Peters, A. & Jones, E. G.) 201–253 (Plenum, New York, 1984).
    Google Scholar
  6. Lund, J. S. Anatomical organization of macaque monkey striate visual cortex. Ann. Rev. Neurosci. 11, 253–288 (1988).
    CAS PubMed Google Scholar
  7. Douglas, R. J. & Martin, K. A. C. in The Synaptic Organization of the Brain (ed. Shepherd, G. M.) 459–511 (Oxford Univ. Press, Oxford, 1998).
    Google Scholar
  8. Gupta, A., Wang, Y. & Markram, H. Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Science 287, 273–278 (2000).
    CAS PubMed Google Scholar
  9. Lacaille, J. C., Kunkel, D. D. & Schwartzkroin, P. A. in The Hippocampus: New Vistas (eds Chan-Palay, V. & Kohler, C.) 287–305 (Liss, 1989).
    Google Scholar
  10. Maccaferri, G. & Lacaille, J. C. Interneuron diversity series: Hippocampal interneuron classifications - making things as simple as possible, not simpler. Trends Neurosci. 26, 564–571 (2003).
    CAS PubMed Google Scholar
  11. Cauli, B. et al. Molecular and physiological diversity of cortical nonpyramidal cells. J. Neurosci. 17, 3894–3906 (1997).
    CAS PubMed Google Scholar
  12. Kawaguchi, Y. Physiological, morphological, and histochemical characterization of three classes of interneurons in rat neostriatum. J. Neurosci. 13, 4908–4923 (1993).
    CAS PubMed Google Scholar
  13. Toledo-Rodriguez, M. et al. Correlation maps allow neuronal electrical properties to be predicted from single-cell gene expression profiles in rat neocortex. Cereb. Cortex 14, 1310–1327 (2004).
    PubMed Google Scholar
  14. Kostyuk, P. G. Synaptic mechanism of central inhibition. Prog. Brain Res. 22, 67–85 (1968).
    CAS PubMed Google Scholar
  15. Huang, Z. J., Di Cristo, G. & Ango, F. Development of GABA innervation in the cerebral and cerebellar cortices. Nature Rev. Neurosci. 8, 673–686 (2007).
    CAS Google Scholar
  16. Bayraktar, T., Welker, E., Freund, T. F., Zilles, K. & Staiger, J. F. Neurons immunoreactive for vasoactive intestinal polypeptide in the rat primary somatosensory cortex: morphology and spatial relationship to barrel-related columns. J. Comp. Neurol. 420, 291–304 (2000).
    CAS PubMed Google Scholar
  17. Porter, J. T. et al. Properties of bipolar VIPergic interneurons and their excitation by pyramidal neurons in the rat neocortex. Eur. J. Neurosci. 10, 3617–3628 (1998).
    CAS PubMed Google Scholar
  18. Rozov, A., Jerecic, J., Sakmann, B. & Burnashev, N. AMPA receptor channels with long-lasting desensitization in bipolar interneurons contribute to synaptic depression in a novel feedback circuit in layer 2/3 of rat neocortex. J. Neurosci. 21, 8062–8071 (2001).
    CAS PubMed Google Scholar
  19. Zilberter, Y., Kaiser, K. M. & Sakmann, B. Dendritic GABA release depresses excitatory transmission between layer 2/3 pyramidal and bitufted neurons in rat neocortex. Neuron 24, 979–988 (1999).
    CAS PubMed Google Scholar
  20. Scorcioni, R. & Ascoli, G. A. Algorithmic extraction of morphological statistics from electronic archives of neuroanatomy. Lect. Notes Comput. Sci. 2084, 30–37 (2001).
    Google Scholar
  21. Rall, W. Electrophysiology of a dendritic neuron model. Biophys. J. 2, 145–167 (1962).
    CAS PubMed PubMed Central Google Scholar
  22. Sholl, D. A. Dendritic organization in the neurons of the visual cortex and motor cortices of the cat. J. Anat. 87, 387–406 (1953).
    CAS PubMed PubMed Central Google Scholar
  23. Sholl, D. A. The organization of the visual cortex in the cat. J. Anat. 89, 33–46 (1953).
    Google Scholar
  24. Cannon, R. C., Wheal, H. V. & Turner, D. A. Dendrites of classes of hippocampal neurons differ in structural complexity and branching patterns. J. Comp. Neurol. 413, 619–633 (1999).
    CAS PubMed Google Scholar
  25. Li, Y., Brewer, D., Burke, R. E. & Ascoli, G. A. Developmental changes in spinal motoneuron dendrites in neonatal mice. J. Comp. Neurol. 483, 304–317 (2005).
    PubMed Google Scholar
  26. Uylings, H. B. M. & van Pelt, J. Measures for quantifying dendritic arborizations. Netw. Comput. Neural Syst. 13, 397–414 (2002).
    Google Scholar
  27. Gray, E. G. Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron microscopic study. J. Anat. 93, 420–433 (1959).
    CAS PubMed PubMed Central Google Scholar
  28. Colonnier, M. Synaptic patterns on different cell types in the different laminae of the cat visual cortex. An electron microscope study. Brain Res. 9, 268–287 (1968).
    CAS PubMed Google Scholar
  29. Peters, A., Palay, S. L. & Webster, H. deF. The Fine Structure of the Nervous System. Neurons and their Supporting Cells (Oxford Univ. Press, New York, 1991).
    Google Scholar
  30. Gulyás, A. I., Megías, M., Emri, Z. & Freund, T. F. Total number and ratio of excitatory and inhibitory synapses converging onto single interneurons of different types in the CA1 area of the rat hippocampus. J. Neurosci. 19, 10082–10097 (1999).
    PubMed Google Scholar
  31. Butt, S. J. et al. The temporal and spatial origins of cortical interneurons predict their physiological subtype. Neuron 48, 591–604 (2005).
    CAS PubMed Google Scholar
  32. Dumitriu, D., Cossart, R., Huang, J. & Yuste, R. Correlation between axonal morphologies and synaptic input kinetics of interneurons from mouse visual cortex. Cereb. Cortex 17, 81–91 (2007).
    PubMed Google Scholar
  33. Sik, A., Ylinen, A., Penttonen, M. & Buzsáki, G. Inhibitory CA1-CA3-hilar region feedback in the hippocampus. Science 265, 1722–1724 (1994).
    CAS PubMed Google Scholar
  34. Sik, A., Penttonen, M., Ylinen, A. & Buzsáki, G. Hippocampal CA1 interneurons: an in vivo intracellular labeling study. J. Neurosci. 15, 6651–6665 (1995).
    CAS PubMed Google Scholar
  35. Sik, A., Penttonen, M. & Buzsáki, G. Interneurons in the hippocampal dentate gyrus: an in vivo intracellular study. Eur. J. Neurosci. 9, 573–588 (1997).
    CAS PubMed Google Scholar
  36. Jinno, S. et al. Neuronal diversity in GABAergic long-range projections from the hippocampus. J. Neurosci. 27, 8790–8804 (2007).
    CAS PubMed PubMed Central Google Scholar
  37. Miyashita, T. & Rockland, K. S. GABAergic projections from the hippocampus to the retrosplenial cortex in the rat. Eur. J. Neurosci. 26, 1193–1204 (2007).
    PubMed Google Scholar
  38. Tomioka, R. & Rockland, K. S. Long-distance corticocortical GABAergic neurons in the adult monkey white and gray matter. J. Comp. Neurol. 505, 526–538 (2007).
    PubMed Google Scholar
  39. Tamas, G., Somogyi, P. & Buhl, E. H. Differentially interconnected networks of GABAergic interneurons in the visual cortex of the cat. J. Neurosci. 18, 4255–4270 (1998).
    CAS PubMed Google Scholar
  40. Somogyi, P. & Cowey, A. Combined Golgi and electron microscopic study on the synapses formed by double bouquet cells in the visual cortex of the cat and monkey. J. Comp. Neurol. 195, 547–566 (1981).
    CAS PubMed Google Scholar
  41. Somogyi, P. & Cowey, A. in Cerebral Ccortex vol. 1 Cellular Components of the Cerebral Cortex (eds Peters, A. & Jones, E. G.) 337–360 (Plenum, New York, 1984).
    Google Scholar
  42. White, E. L. Cortical Circuits. Synaptic Organization of the Cerebral Cortex (Birkhauser, Boston, 1989).
    Google Scholar
  43. Valverde, F. The organization of area 18 in the monkey: Golgi study. Anat. Embryol. 154, 305–334 (1978).
    CAS PubMed Google Scholar
  44. Ballesteros-Yánez, I. et al. The double bouquet cell in the human cerebral cortex and a comparison with other mammals. J. Comp. Neurol. 486, 344–360 (2005).
    Google Scholar
  45. Binzegger, T., Douglas, R. J. & Martin, K. A. Stereotypical bouton clustering of individual neurons in cat primary visual cortex. J. Neurosci. 27, 12242–12254 (2007).
    CAS PubMed Google Scholar
  46. Tamas, G., Buhl, E. H. & Somogyi, P. Massive autaptic self-innervation of GABAergic neurons in cat visual cortex. J. Neurosci. 17, 6352–6364 (1997).
    CAS PubMed Google Scholar
  47. Peters, A. & Harriman, K. M. Different kinds of axon terminals forming symmetric synapses with the cell bodies and initial axon segments of layer II/III pyramidal cells. I. Morphometric analysis. J. Neurocytol. 19, 154–174 (1990).
    CAS PubMed Google Scholar
  48. DeFelipe, J., Hendry, S. H., Jones, E. G. & Schmechel, D. Variability in the terminations of GABAergic chandelier cell axons on initial segments of pyramidal cell axons in the monkey sensory-motor cortex. J. Comp. Neurol. 231, 364–384 (1985).
    CAS PubMed Google Scholar
  49. Somogyi, P. & Klausberger, T. Defined types of cortical interneuron structure space and spike timing in the hippocampus. J. Physiol. 562, 9–26 (2005).
    CAS PubMed Google Scholar
  50. DeFelipe, J. (ed.) J. Neurocytol. 31, 181–416 (2002).
    Google Scholar
  51. McBain, C. J. & Fisahn, A. Interneurons unbound. Nature Rev. Neurosci. 2, 11–23 (2001).
    CAS Google Scholar
  52. Bennett, M. V. & Zukin, R. S. Electrical coupling and neuronal synchronization in the mammalian brain. Neuron 41, 495–511 (2004).
    CAS PubMed Google Scholar
  53. Tamas, G., Buhl, E. H., Lörincz, A. & Somogyi, P. Proximally targeted GABAergic synapses and gap junctions synchronize cortical interneurons. Nature Neurosci. 3, 366–371 (2000).
    CAS PubMed Google Scholar
  54. Fukuda, T. & Kosaka, T. Ultrastructural study of gap junctions between dendrites of parvalbumin-containing GABAergic neurons in various neocortical areas of the adult rat. Neuroscience 120, 5–20 (2003).
    CAS PubMed Google Scholar
  55. Zoli, M., Jansson, A., Sykova, E., Agnati, L. F. & Fuxe, K. Volume transmission in the CNS and its relevance for neuropsychopharmacology. Trends Pharmacol. Sci. 20, 142–150 (1999).
    CAS PubMed Google Scholar
  56. Vizi, E. S. Role of high-affinity receptors and membrane transporters in nonsynaptic communication and drug action in the central nervous system. Pharmacol. Rev. 52, 63–89 (2000).
    CAS PubMed Google Scholar
  57. Monyer, H. & Markram, H. Interneuron diversity series: Molecular and genetic tools to study GABAergic interneuron diversity and function. Trends Neurosci. 27, 90–97 (2004).
    CAS PubMed Google Scholar
  58. Ray, A., Zoidl, G., Weickert, S., Wahle, P. & Dermietzel, R. Site-specific and developmental expression of pannexin1 in the mouse nervous system. Eur. J. Neurosci. 21, 3277–3290 (2005).
    PubMed Google Scholar
  59. Kamme, F. et al. Single-cell microarray analysis in hippocampus CA1: demonstration and validation of cellular heterogeneity. J. Neurosci. 23, 3607–3615 (2003).
    CAS PubMed Google Scholar
  60. Sugino, K. et al. Molecular taxonomy of major neuronal classes in the adult mouse forebrain. Nature Neurosci. 9, 99–107 (2006).
    CAS PubMed Google Scholar
  61. DeFelipe, J. Chandelier cells and epilepsy. Brain 122, 1807–1822 (1999).
    PubMed Google Scholar
  62. Llinás, R. R., Grace, A. A. & Yarom, Y. In vitro neurons in mammalian cortical layer 4 exhibit intrinsic oscillatory activity in the 10- to 50-Hz frequency range. Proc. Natl Acad. Sci. USA 88, 897–901 (1991).
    PubMed Google Scholar
  63. Hutcheon, B. & Yarom, Y. Resonance, oscillation and the intrinsic frequency preferences of neurons. Trends Neurosci. 23, 216–222 (2000).
    CAS PubMed Google Scholar
  64. Pike, F. G. et al. Distinct frequency preferences of different types of rat hippocampal neurones in response to oscillatory input currents. J. Physiol. 529, 205–213 (2000).
    CAS PubMed PubMed Central Google Scholar
  65. Klausberger, T. et al. Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo. Nature 421, 844–848 (2003).
    CAS Google Scholar
  66. Goldberg, J. H., Tamas, G. & Yuste, R. Ca2+ imaging of mouse neocortical interneurone dendrites: Ia-type K+ channels control action potential backpropagation. J. Physiol. 551, 49–65 (2003).
    CAS PubMed PubMed Central Google Scholar
  67. Ali, A. B., Bannister, A. P. & Thomson, A. M. Robust correlations between action potential duration and the properties of synaptic connections in layer 4 interneurones in juvenile and adult neocortical slices. J. Physiol. 580, 149–169 (2007).
    CAS PubMed PubMed Central Google Scholar
  68. Kröner, S., Krimer, L. S., Lewis, D. A. & Barrionuevo, G. Dopamine increases inhibition in the monkey dorsolateral prefrontal cortex through cell type-specific modulation of interneurons. Cereb. Cortex 17, 1020–1032 (2007).
    PubMed Google Scholar
  69. Thomson, A. M., West, D. C. & Deuchars, J. Properties of single axon EPSPs elicited in spiny interneurones by action potentials in pyramidal neurones in slices of rat neocortex. Neuroscience 69, 727–738 (1995).
    CAS PubMed Google Scholar
  70. Ali, A. B. & Thomson, A. M. Synaptic a5 subunit containing GABAA receptors mediate IPSPs elicited by dendrite-targeting cells in rat neocortex. Cereb. Cortex 18, 1260–1271 (2008).
    PubMed Google Scholar
  71. Markram, H. & Tsodyks, M. Redistribution of synaptic efficacy between neocortical pyramidal neurons. Nature 382, 807–810 (1996).
    CAS PubMed Google Scholar
  72. Kullmann, D. M. & Lamsa, K. P. Long-term synaptic plasticity in hippocampal interneurons. Nature Rev. Neurosci. 8, 687–699 (2007).
    CAS Google Scholar
  73. Pelletier, J. G. & Lacaille, J. C. Long-term synaptic plasticity in hippocampal feedback inhibitory networks. Prog. Brain Res. 169, 241–250 (2008).
    CAS PubMed Google Scholar
  74. Thomson, A. M., Deuchars, J. & West, D. C. Single axon EPSPs in neocortical interneurones exhibit pronounced paired pulse facilitation. Neuroscience 54, 347–360 (1993).
    CAS PubMed Google Scholar
  75. Thomson, A. M., West, D. C., Wang, Y. & Bannister, A. P. Synaptic connections and small circuits involving excitatory and inhibitory neurones in layers 2 to 5 of adult rat and cat neocortex: triple intracellular recordings and biocytin-labelling in vitro. Cereb. Cortex 12, 936–953 (2002).
    PubMed Google Scholar
  76. West, D. C., Mercer, A., Kirchhecker, S., Morris, O. T. & Thomson, A. M. Layer 6 cortico- thalamic pyramidal cells preferentially innervate interneurons and generate facilitating EPSPs. Cereb. Cortex 16, 200–211 (2006).
    PubMed Google Scholar
  77. Maffei, A., Nataraj, K., Nelson, S. B. & Turrigiano, G. G. Potentiation of cortical inhibition by visual deprivation. Nature 443, 81–84 (2006).
    CAS PubMed Google Scholar
  78. Kawaguchi, Y. & Shindou, T. Noradrenergic excitation and inhibition of GABAergic cell types in rat frontal cortex. J. Neurosci. 18, 6963–6976 (1998).
    CAS PubMed Google Scholar
  79. Xiang, Z., Huguenard, J. R. & Prince, D. A. Cholinergic switching within neocortical inhibitory networks. Science 281, 985–988 (1998).
    CAS PubMed Google Scholar
  80. Férézou, I. et al. 5-HT3 receptors mediate serotonergic fast synaptic excitation of neocortical vasoactive intestinal peptide/cholecystokinin interneurons. J. Neurosci. 22, 7389–7397 (2002).
    PubMed Google Scholar
  81. Bacci, A., Huguenard, J. R. & Prince, D. A. Long-lasting self-inhibition of neocortical interneurons mediated by endocannabinoids. Nature 431, 312–316 (2004).
    CAS PubMed Google Scholar
  82. Bodor, A. L. et al. Endocannabinoid signaling in rat somatosensory cortex: laminar differences and involvement of specific interneuron types. J. Neurosci. 25, 6845–6856 (2005).
    CAS PubMed Google Scholar
  83. Gulledge, A. T., Park, S. B., Kawaguchi, Y. & Stuart, G. J. Heterogeneity of phasic cholinergic signaling in neocortical neurons. J. Neurophysiol. 97, 2215–2229 (2007).
    CAS PubMed Google Scholar
  84. Buzsáki, G. Large-scale recording of neuronal ensembles. Nature Neurosci. 7, 446–451 (2004).
    PubMed Google Scholar
  85. Csicsvari, J., Hirase, H., Czurkó, A., Mamiya, A. & Buzsáki, G. Oscillatory coupling of hippocampal pyramidal cells and interneurons in the behaving rat. J. Neurosci. 19, 274–287 (1999).
    CAS PubMed Google Scholar
  86. Barthó, P. et al. Characterization of neocortical principal cells and interneurons by network interactions and extracellular features. J. Neurophysiol. 92, 600–608 (2004).
    PubMed Google Scholar
  87. Klausberger, T. et al. Spike timing of dendrite-targeting bistratified cells during hippocampal network oscillations in vivo. Nature Neurosci. 7, 41–47 (2004).
    CAS PubMed Google Scholar
  88. Goldberg, J. H., Lacefield, C. O. & Yuste, R. Global dendritic calcium spikes in mouse layer 5 low threshold spiking interneurones: implications for control of pyramidal cell bursting. J. Physiol. 558, 465–478 (2004).
    CAS PubMed PubMed Central Google Scholar
  89. Tyner, C. F. The naming of neurons: applications of taxonomic theory to the study of cellular populations. Brain Behav. Evol. 12, 75–96 (1975).
    CAS PubMed Google Scholar
  90. Bota, M. & Swanson, L. W. The neuron classification problem. Brain Res. Rev. 56, 79–88 (2007).
    CAS PubMed PubMed Central Google Scholar
  91. Miyoshi, G., Butt, S. J., Takebayashi, H. & Fishell, G. Physiologically distinct temporal cohorts of cortical interneurons arise from telencephalic _Olig2_-expressing precursors. J. Neurosci. 27, 7786–7798 (2007).
    CAS PubMed Google Scholar
  92. Tsiola, A., Hamzei-Sichani, F., Peterlin, Z. & Yuste, R. Quantitative morphologic classification of layer 5 neurons from mouse primary visual cortex. J. Comp. Neurol. 461, 415–428 (2003).
    PubMed Google Scholar
  93. Wonders, C. P. & Anderson, S. A. The origin and specification of cortical interneurons. Nature Rev. Neurosci. 7, 687–696 (2006).
    CAS Google Scholar
  94. Thomson, A. M. & Lamy, C. Functional maps of neocortical local circuitry. Front. Neurosci. 1, 19–42 (2007).
    CAS PubMed PubMed Central Google Scholar
  95. Swadlow, H. A. Fast-spike interneurons and feedforward inhibition in awake sensory neocortex. Cereb. Cortex 13, 25–32 (2003).
    PubMed Google Scholar
  96. Goldberg, J. H., Tamas, G., Aronov, D. & Yuste, R. Calcium microdomains in aspiny dendrites. Neuron 40, 807–821 (2003).
    CAS PubMed Google Scholar
  97. Goldberg, J. H., Yuste, R. & Tamas, G. Ca2+ imaging of mouse neocortical interneurone dendrites: contribution of Ca2+-permeable AMPA and NMDA receptors to subthreshold Ca2+ dynamics. J. Physiol. 551, 67–78 (2003).
    CAS PubMed PubMed Central Google Scholar
  98. Kaiser, K. M., Zilberter, Y. & Sakmann, B. Back-propagating action potentials mediate calcium signalling in dendrites of bitufted interneurons in layer 2/3 of rat somatosensory cortex. J. Physiol. 535, 17–31 (2001).
    CAS PubMed PubMed Central Google Scholar
  99. Kaiser, K. M., Zilberter, Y. & Sakmann, B. Postsynaptic calcium influx at single synaptic contacts between pyramidal neurons and bitufted interneurons in layer 2/3 of rat neocortex is enhanced by backpropagating action potentials. J. Neurosci. 24, 1319–1329 (2004).
    CAS PubMed Google Scholar
  100. Povysheva, N. V. et al. Electrophysiological differences between neurogliaform cells from monkey and rat prefrontal cortex. J. Neurophysiol. 97, 1030–1039 (2007).
    CAS PubMed Google Scholar
  101. Ascoli, G. A. Mobilizing the base of neuroscience data: the case of neuronal morphologies. Nature Rev. Neurosci. 7, 318–324 (2007).
    Google Scholar
  102. Ascoli, G. A., Donohue, D. E. & Halavi, M. NeuroMorpho.Org: a central resource for neuronal morphologies. J. Neurosci. 27, 9247–9251 (2007).
    CAS PubMed Google Scholar
  103. Markram, H. The Blue Brain Project. Nature Rev. Neurosci. 7, 153–160 (2006).
    CAS Google Scholar
  104. Martinotti, C. Contributo allo studio della corteccia cerebrale, ed all'origine centrale dei nervi. Ann. Freniatr. Sci. Affini. 1, 14–381 (1889).
    Google Scholar
  105. Marin-Padilla, M. in Cerebral Cortex: Cellular Components of the Cerebral Cortex (eds Peters, A. & Jones, E. G.) 447–478 (Plenum, New York, 1984).
    Google Scholar
  106. Wang, Y. et al. Anatomical, physiological and molecular properties of Martinotti cells in the somatosensory cortex of the juvenile rat. J. Physiol. 561, 65–90 (2004).
    CAS PubMed PubMed Central Google Scholar
  107. Kawaguchi, Y. & Kubota, Y. GABAergic cell subtypes and their synaptic connections in rat frontal cortex. Cereb. Cortex 7, 476–486 (1997).
    CAS PubMed Google Scholar
  108. Tamás, G., Lorincz, A., Simon, A. & Szabadics, J. Identified sources and targets of slow inhibition in the neocortex. Science 299, 1902–1905 (2003).
    PubMed Google Scholar
  109. Toledo-Rodriguez, M. Genetical, Anatomical and Electrical Determinants of Neuronal Diversity. Thesis, Weizmann Inst. Sci.
  110. Goldberg, J. H. & Yuste, R. Space matters: local and global dendritic Ca2+ compartmentalization in cortical interneurons. Trends Neurosci. 28, 158–167 (2005).
    CAS PubMed Google Scholar

Download references