Biomarkers of mild traumatic brain injury in cerebrospinal fluid and blood (original) (raw)
Roozenbeek, B., Maas, A. I. & Menon, D. K. Opinion: Changing patterns in the epidemiology of traumatic brain injury. Nat. Rev. Neurol.http://dx.doi/org/nrneurol.2013.22
American Congress of Rehabilitation Medicine. Definition of mild traumatic brain injury. J. Head Trauma Rehabil.8, 86–87 (1993).
Blumbergs, P. C. et al. Staining of amyloid precursor protein to study axonal damage in mild head injury. Lancet344, 1055–1056 (1994). ArticleCASPubMed Google Scholar
Browne, K. D., Chen, X. H., Meaney, D. F. & Smith, D. H. Mild traumatic brain injury and diffuse axonal injury in swine. J. Neurotrauma28, 1747–1755 (2011). ArticlePubMedPubMed Central Google Scholar
Baugh, C. M. et al. Chronic traumatic encephalopathy: neurodegeneration following repetitive concussive and subconcussive brain trauma. Brain Imaging Behav.6, 244–254 (2012). ArticlePubMed Google Scholar
Gavett, B. E., Stern, R. A. & McKee, A. C. Chronic traumatic encephalopathy: a potential late effect of sport-related concussive and subconcussive head trauma. Clin. Sports Med.30, 179–188 (2011). ArticlePubMedPubMed Central Google Scholar
Goldstein, L. E. et al. Chronic traumatic encephalopathy in blast-exposed military veterans and a blast neurotrauma mouse model. Sci. Transl. Med.4, 134ra160 (2012). Google Scholar
McCrory, P. et al. Consensus statement on concussion in sport—the 3rd International Conference on Concussion in Sport held in Zurich, November 2008. Phys. Sportsmed.37, 141–159 (2009). ArticlePubMed Google Scholar
Røe, C., Sveen, U., Alvsåker, K. & Bautz-Holter, E. Post-concussion symptoms after mild traumatic brain injury: influence of demographic factors and injury severity in a 1-year cohort study. Disabil. Rehabil.31, 1235–1243 (2009). ArticlePubMed Google Scholar
Williams, W. H., Potter, S. & Ryland, H. Mild traumatic brain injury and postconcussion syndrome: a neuropsychological perspective. J. Neurol. Neurosurg. Psychiatry81, 1116–1122 (2010). ArticlePubMed Google Scholar
Smith, D. H. & Meaney, D. F. Axonal damage in traumatic brain injury. The Neuroscientist6, 483–495 (2000). Article Google Scholar
Johnson, V. E., Stewart, W. & Smith, D. H. Axonal pathology in traumatic brain injury. Exp. Neurol. (2012).
Wolf, J. A., Stys, P. K., Lusardi, T., Meaney, D. & Smith, D. H. Traumatic axonal injury induces calcium influx modulated by tetrodotoxin-sensitive sodium channels. J. Neurosci.21, 1923–1930 (2001). ArticleCASPubMedPubMed Central Google Scholar
Saatman, K. E., Creed, J. & Raghupathi, R. Calpain as a therapeutic target in traumatic brain injury. Neurotherapeutics7, 31–42 (2010). ArticleCASPubMedPubMed Central Google Scholar
Barkhoudarian, G., Hovda, D. A. & Giza, C. C. The molecular pathophysiology of concussive brain injury. Clin. Sports Med.30, 33–48 (2011). ArticlePubMed Google Scholar
Tang-Schomer, M. D., Patel, A. R., Baas, P. W. & Smith, D. H. Mechanical breaking of microtubules in axons during dynamic stretch injury underlies delayed elasticity, microtubule disassembly, and axon degeneration. FASEB J.24, 1401–1410 (2010). ArticleCASPubMedPubMed Central Google Scholar
Tang-Schomer, M. D., Johnson, V. E., Baas, P. W., Stewart, W. & Smith, D. H. Partial interruption of axonal transport due to microtubule breakage accounts for the formation of periodic varicosities after traumatic axonal injury. Exp. Neurol.233, 364–372 (2012). ArticlePubMed Google Scholar
Povlishock, J. T., Becker, D. P., Cheng, C. L. & Vaughan, G. W. Axonal change in minor head injury. J. Neuropathol. Exp. Neurol.42, 225–242 (1983). ArticleCASPubMed Google Scholar
Povlishock, J. T. & Becker, D. P. Fate of reactive axonal swellings induced by head injury. Lab. Invest.52, 540–552 (1985). CASPubMed Google Scholar
Chen, X. H. et al. Long-term accumulation of amyloid-β, β-secretase, presenilin-1, and caspase-3 in damaged axons following brain trauma. Am. J. Pathol.165, 357–371 (2004). ArticleCASPubMedPubMed Central Google Scholar
Lipton, M. L. et al. Multifocal white matter ultrastructural abnormalities in mild traumatic brain injury with cognitive disability: a voxel-wise analysis of diffusion tensor imaging. J. Neurotrauma25, 1335–1342 (2008). ArticlePubMed Google Scholar
Niogi, S. N. et al. Extent of microstructural white matter injury in postconcussive syndrome correlates with impaired cognitive reaction time: a 3T diffusion tensor imaging study of mild traumatic brain injury. AJNR Am. J. Neuroradiol.29, 967–973 (2008). ArticleCASPubMedPubMed Central Google Scholar
Wilde, E. A. et al. Diffusion tensor imaging of acute mild traumatic brain injury in adolescents. Neurology70, 948–955 (2008). ArticleCASPubMed Google Scholar
New Zealand Guidelines Group Staff, Accident Compensation Corporation (N. Z.) Staff. Traumatic Brain Injury: Diagnosis, Acute Management and Rehabilitation (Accident Compensation Corporation, New Zealand, 2006).
Iverson, G. L., Gaetz, M., Lovell, M. R. & Collins, M. W. Cumulative effects of concussion in amateur athletes. Brain Inj.18, 433–443 (2004). ArticlePubMed Google Scholar
Brooks, W. M. et al. Metabolic and cognitive response to human traumatic brain injury: a quantitative proton magnetic resonance study. J. Neurotrauma17, 629–640 (2000). ArticleCASPubMed Google Scholar
Anderson, V., Catroppa, C., Morse, S., Haritou, F. & Rosenfeld, J. Recovery of intellectual ability following traumatic brain injury in childhood: impact of injury severity and age at injury. Pediatr. Neurosurg.32, 282–290 (2000). ArticleCASPubMed Google Scholar
Prins, M. L. & Hovda, D. A. Developing experimental models to address traumatic brain injury in children. J. Neurotrauma20, 123–137 (2003). ArticlePubMed Google Scholar
Duhaime, A. C. Large animal models of traumatic injury to the immature brain. Dev. Neurosci.28, 380–387 (2006). ArticleCASPubMed Google Scholar
Pinto, P. S., Meoded, A., Poretti, A., Tekes, A. & Huisman, T. A. The unique features of traumatic brain injury in children. Review of the characteristics of the pediatric skull and brain, mechanisms of trauma, patterns of injury, complications, and their imaging findings—part 2. J. Neuroimaging22, e18–e41 (2012). ArticlePubMed Google Scholar
Pinto, P. S., Poretti, A., Meoded, A., Tekes, A. & Huisman, T. A. The unique features of traumatic brain injury in children. Review of the characteristics of the pediatric skull and brain, mechanisms of trauma, patterns of injury, complications and their imaging findings—part 1. J. Neuroimaging22, e1–e17 (2012). ArticlePubMed Google Scholar
Roberts, A. H. Brain Damage in Boxers: a Study of the Prevalence of Traumatic Encephalopathy Among Ex-Professional Boxers (Pitman Medical Scientific Publications, London, 1969). Google Scholar
Jordan, B. D. et al. Apolipoprotein E ε4 associated with chronic traumatic brain injury in boxing. JAMA278, 136–140 (1997). ArticleCASPubMed Google Scholar
Stern, R. A. et al. Long-term consequences of repetitive brain trauma: chronic traumatic encephalopathy. PM R3, S460–S467 (2011). ArticlePubMed Google Scholar
Smith, D. H., Johnson, V. E. & Stewart, W. The chronic neuropathologies of single and repetitive traumatic brain injury: potential substrates of dementia? Nat. Rev. Neurol. (in press).
Gavett, B. E. et al. Clinical appraisal of chronic traumatic encephalopathy: current perspectives and future directions. Curr. Opin. Neurol.24, 525–531 (2011). ArticlePubMed Google Scholar
Jordan, B. D. Chronic traumatic brain injury associated with boxing. Semin. Neurol.20, 179–185 (2000). ArticleCASPubMed Google Scholar
Mendez, M. F. The neuropsychiatric aspects of boxing. Int. J. Psychiatry Med.25, 249–262 (1995). ArticleCASPubMed Google Scholar
Tokuda, T., Ikeda, S., Yanagisawa, N., Ihara, Y. & Glenner, G. G. Re-examination of ex-boxers' brains using immunohistochemistry with antibodies to amyloid β-protein and tau protein. Acta Neuropathol.82, 280–285 (1991). ArticleCASPubMed Google Scholar
Johnson, V. E., Stewart, W. & Smith, D. H. Traumatic brain injury and amyloid-β pathology: a link to Alzheimer's disease? Nat. Rev. Neurosci.11, 361–370 (2010). ArticleCASPubMedPubMed Central Google Scholar
Johnson, V. E., Stewart, W. & Smith, D. H. Widespread tau and amyloid-β pathology many years after a single traumatic brain injury in humans. Brain Pathol.22, 142–149 (2012). ArticleCASPubMed Google Scholar
Johnson, V. E., Stewart, W., Trojanowski, J. Q. & Smith, D. H. Acute and chronically increased immunoreactivity to phosphorylation-independent but not pathological TDP-43 after a single traumatic brain injury in humans. Acta Neuropathol.122, 715–726 (2011). ArticlePubMedPubMed Central Google Scholar
Jordan, B. D. Clinical spectrum of sports-related traumatic brain injury. Nat. Rev. Neurol. (in press).
Blennow, K., Hampel, H., Weiner, M. & Zetterberg, H. Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat. Rev. Neurol.6, 131–144 (2010). ArticleCASPubMed Google Scholar
Abbott, N. J., Rönnbäck, L. & Hansson, E. Astrocyte-endothelial interactions at the blood–brain barrier. Nat. Rev. Neurosci.7, 41–53 (2006). ArticleCASPubMed Google Scholar
Tibbling, G., Link, H. & Ohman, S. Principles of albumin and IgG analyses in neurological disorders. I. Establishment of reference values. Scand. J. Clin. Lab. Invest.37, 385–390 (1977). ArticleCASPubMed Google Scholar
Csuka, E. et al. IL-10 levels in cerebrospinal fluid and serum of patients with severe traumatic brain injury: relationship to IL-6, TNF-α, TGF-β1 and blood–brain barrier function. J. Neuroimmunol.101, 211–221 (1999). ArticleCASPubMed Google Scholar
Kossmann, T. et al. Intrathecal and serum interleukin-6 and the acute-phase response in patients with severe traumatic brain injuries. Shock4, 311–317 (1995). ArticleCASPubMed Google Scholar
Blennow, K. et al. No neurochemical evidence of brain injury after blast overpressure by repeated explosions or firing heavy weapons. Acta Neurol. Scand.123, 245–251 (2011). ArticleCASPubMed Google Scholar
Zetterberg, H. et al. Neurochemical aftermath of amateur boxing. Arch. Neurol.63, 1277–1280 (2006). ArticlePubMed Google Scholar
Semple, B. D., Bye, N., Rancan, M., Ziebell, J. M. & Morganti-Kossmann, M. C. Role of CCL2 (MCP-1) in traumatic brain injury (TBI): evidence from severe TBI patients and CCL2−/− mice. J. Cereb Blood Flow Metab.30, 769–782 (2010). ArticlePubMed Google Scholar
Kirchhoff, C. et al. Cerebrospinal IL-10 concentration is elevated in non-survivors as compared to survivors after severe traumatic brain injury. Eur. J. Med. Res.13, 464–468 (2008). CASPubMed Google Scholar
Goodman, J. C., Van, M., Gopinath, S. P. & Robertson, C. S. Pro-inflammatory and pro-apoptotic elements of the neuroinflammatory response are activated in traumatic brain injury. Acta Neurochir. Suppl.102, 437–439 (2008). ArticleCASPubMed Google Scholar
Buttram, S. D. et al. Multiplex assessment of cytokine and chemokine levels in cerebrospinal fluid following severe pediatric traumatic brain injury: effects of moderate hypothermia. J. Neurotrauma24, 1707–1717 (2007). ArticlePubMed Google Scholar
Phillips, D. J. et al. Activin A release into cerebrospinal fluid in a subset of patients with severe traumatic brain injury. J. Neurotrauma23, 1283–1294 (2006). ArticlePubMed Google Scholar
Maier, B. et al. Delayed elevation of soluble tumor necrosis factor receptors p75 and p55 in cerebrospinal fluid and plasma after traumatic brain injury. Shock26, 122–127 (2006). ArticleCASPubMed Google Scholar
Shiozaki, T. et al. Cerebrospinal fluid concentrations of anti-inflammatory mediators in early-phase severe traumatic brain injury. Shock23, 406–410 (2005). ArticleCASPubMed Google Scholar
Singhal, A. et al. Association between cerebrospinal fluid interleukin-6 concentrations and outcome after severe human traumatic brain injury. J. Neurotrauma19, 929–937 (2002). ArticleCASPubMed Google Scholar
Stahel, P. F. et al. Intrathecal levels of complement-derived soluble membrane attack complex (sC5b-9) correlate with blood–brain barrier dysfunction in patients with traumatic brain injury. J. Neurotrauma18, 773–781 (2001). ArticleCASPubMed Google Scholar
Bell, M. J. et al. Interleukin-6 and interleukin-10 in cerebrospinal fluid after severe traumatic brain injury in children. J. Neurotrauma14, 451–457 (1997). ArticleCASPubMed Google Scholar
Trojanowski, J. Q., Schuck, T., Schmidt, M. L. & Lee, V. M. Distribution of tau proteins in the normal human central and peripheral nervous system. J. Histochem. Cytochem.37, 209–215 (1989). ArticleCASPubMed Google Scholar
Friede, R. L. & Samorajski, T. Axon caliber related to neurofilaments and microtubules in sciatic nerve fibers of rats and mice. Anat. Rec.167, 379–387 (1970). ArticleCASPubMed Google Scholar
Franz, G. et al. Amyloid β1–42 and tau in cerebrospinal fluid after severe traumatic brain injury. Neurology60, 1457–1461 (2003). ArticleCASPubMed Google Scholar
Zemlan, F. P. et al. C-tau biomarker of neuronal damage in severe brain injured patients: association with elevated intracranial pressure and clinical outcome. Brain Res.947, 131–139 (2002). ArticleCASPubMed Google Scholar
Blennow, K. & Nellgård, B. Amyloid β1–42 and tau in cerebrospinal fluid after severe traumatic brain injury. Neurology62, 159–160 (2004). ArticlePubMed Google Scholar
Ost, M. et al. Initial CSF total tau correlates with 1-year outcome in patients with traumatic brain injury. Neurology67, 1600–1604 (2006). ArticleCASPubMed Google Scholar
Liu, Q. et al. Neurofilament proteins in neurodegenerative diseases. Cell. Mol. Life Sci.61, 3057–3075 (2004). ArticleCASPubMed Google Scholar
Siman, R. et al. A panel of neuron-enriched proteins as markers for traumatic brain injury in humans. J. Neurotrauma26, 1867–1877 (2009). ArticlePubMedPubMed Central Google Scholar
Olsson, B., Zetterberg, H., Hampel, H. & Blennow, K. Biomarker-based dissection of neurodegenerative diseases. Prog. Neurobiol.4, 520–534 (2011). ArticleCAS Google Scholar
Scarna, H. et al. Neuron-specific enolase as a marker of neuronal lesions during various comas in man. Neurochem. Int.4, 405–411 (1982). ArticleCASPubMed Google Scholar
Bohmer, A. E. et al. Neuron-specific enolase, S100B, and glial fibrillary acidic protein levels as outcome predictors in patients with severe traumatic brain injury. Neurosurgery68, 1624–1631 (2011). ArticlePubMed Google Scholar
Chiaretti, A. et al. NGF, DCX, and NSE upregulation correlates with severity and outcome of head trauma in children. Neurology72, 609–616 (2009). ArticleCASPubMed Google Scholar
Varma, S. et al. F2-isoprostane and neuron-specific enolase in cerebrospinal fluid after severe traumatic brain injury in infants and children. J. Neurotrauma20, 781–786 (2003). ArticlePubMed Google Scholar
Berger, R. P. et al. Neuron-specific enolase and S100B in cerebrospinal fluid after severe traumatic brain injury in infants and children. Pediatrics109, E31 (2002). ArticlePubMed Google Scholar
Ross, S. A., Cunningham, R. T., Johnston, C. F. & Rowlands, B. J. Neuron-specific enolase as an aid to outcome prediction in head injury. Br. J. Neurosurg.10, 471–476 (1996). ArticleCASPubMed Google Scholar
Berger, R. P. et al. Identification of inflicted traumatic brain injury in well-appearing infants using serum and cerebrospinal markers: a possible screening tool. Pediatrics117, 325–332 (2006). ArticlePubMed Google Scholar
Ramont, L. et al. Effects of hemolysis and storage condition on neuron-specific enolase (NSE) in cerebrospinal fluid and serum: implications in clinical practice. Clin. Chem. Lab. Med.43, 1215–1217 (2005). ArticleCASPubMed Google Scholar
Moore, B. W. & McGregor, D. Chromatographic and electrophoretic fractionation of soluble proteins of brain and liver. J. Biol. Chem.240, 1647–1653 (1965). CASPubMed Google Scholar
Isobe, T., Ishioka, N. & Okuyama, T. Structural relation of two S-100 proteins in bovine brain; subunit composition of S.-100A protein. Eur. J. Biochem.115, 469–474 (1981). ArticleCASPubMed Google Scholar
Nylen, K. et al. Serum levels of S100B, S100A1B and S100BB are all related to outcome after severe traumatic brain injury. Acta Neurochir. (Wien)150, 221–227 (2008). ArticleCAS Google Scholar
Czeiter, E. et al. Brain injury biomarkers may improve the predictive power of the IMPACT outcome calculator. J. Neurotrauma29, 1770–1778 (2012). ArticlePubMedPubMed Central Google Scholar
McKenzie, J. E., Gentleman, S. M., Roberts, G. W., Graham, D. I. & Royston, M. C. Increased numbers of β APP-immunoreactive neurones in the entorhinal cortex after head injury. Neuroreport6, 161–164 (1994). ArticleCASPubMed Google Scholar
Sherriff, F. E., Bridges, L. R. & Sivaloganathan, S. Early detection of axonal injury after human head trauma using immunocytochemistry for β-amyloid precursor protein. Acta Neuropathol.87, 55–62 (1994). ArticleCASPubMed Google Scholar
Gentleman, S. M. et al. Axonal injury: a universal consequence of fatal closed head injury? Acta Neuropathol.89, 537–543 (1995). ArticleCASPubMed Google Scholar
Ahlgren, S., Li, G. L. & Olsson, Y. Accumulation of β-amyloid precursor protein and ubiquitin in axons after spinal cord trauma in humans: immunohistochemical observations on autopsy material. Acta Neuropathol.92, 49–55 (1996). ArticleCASPubMed Google Scholar
Gleckman, A. M., Bell, M. D., Evans, R. J. & Smith, T. W. Diffuse axonal injury in infants with nonaccidental craniocerebral trauma: enhanced detection by β-amyloid precursor protein immunohistochemical staining. Arch. Pathol. Lab. Med.123, 146–151 (1999). CASPubMed Google Scholar
McKenzie, K. J. et al. Is β-APP a marker of axonal damage in short-surviving head injury? Acta Neuropathol.92, 608–613 (1996). ArticleCASPubMed Google Scholar
Smith, D. H., Chen, X. H., Iwata, A. & Graham, D. I. Amyloid β accumulation in axons after traumatic brain injury in humans. J. Neurosurg.98, 1072–1077 (2003). ArticleCASPubMed Google Scholar
Uryu, K. et al. Multiple proteins implicated in neurodegenerative diseases accumulate in axons after brain trauma in humans. Exp. Neurol.208, 185–192 (2007). ArticleCASPubMedPubMed Central Google Scholar
Chen, X. H., Johnson, V. E., Uryu, K., Trojanowski, J. Q. & Smith, D. H. A lack of amyloid β plaques despite persistent accumulation of amyloid β in axons of long-term survivors of traumatic brain injury. Brain Pathol.19, 214–223 (2009). ArticlePubMed Google Scholar
Roberts, G. W., Gentleman, S. M., Lynch, A. & Graham, D. I. β A4 amyloid protein deposition in brain after head trauma. Lancet338, 1422–1423 (1991). ArticleCASPubMed Google Scholar
Graham, D. I., Gentleman, S. M., Lynch, A. & Roberts, G. W. Distribution of β-amyloid protein in the brain following severe head injury. Neuropathol. Appl. Neurobiol.21, 27–34 (1995). ArticleCASPubMed Google Scholar
Horsburgh, K. et al. β-amyloid (Aβ)42(43), Aβ42, Aβ40 and apoE immunostaining of plaques in fatal head injury. Neuropathol. Appl. Neurobiol.26, 124–132 (2000). ArticleCASPubMed Google Scholar
Raby, C. A. et al. Traumatic brain injury increases β-amyloid peptide1–42 in cerebrospinal fluid. J. Neurochem.71, 2505–2509 (1998). ArticleCASPubMed Google Scholar
Olsson, A. et al. Marked increase of β-amyloid1–42 and amyloid precursor protein in ventricular cerebrospinal fluid after severe traumatic brain injury. J. Neurol.251, 870–876 (2004). ArticleCASPubMed Google Scholar
Mortberg, E. et al. Plasma tau protein in comatose patients after cardiac arrest treated with therapeutic hypothermia. Acta Anaesthesiol. Scand.55, 1132–1138 (2011). ArticleCASPubMed Google Scholar
Rissin, D. M. et al. Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations. Nat. Biotechnol.28, 595–599 (2010). ArticleCASPubMedPubMed Central Google Scholar
Kovesdi, E. et al. Update on protein biomarkers in traumatic brain injury with emphasis on clinical use in adults and pediatrics. Acta Neurochir. (Wien)152, 1–17 (2010). Article Google Scholar
Mussack, T. et al. Significance of Elecsys S100 immunoassay for real-time assessment of traumatic brain damage in multiple trauma patients. Clin. Chem. Lab. Med.44, 1140–1145 (2006). ArticleCASPubMed Google Scholar
Rothoerl, R. D. & Woertgen, C. High serum S100B levels for trauma patients without head injuries. Neurosurgery49, 1490–1493 (2001). ArticleCASPubMed Google Scholar
Anderson, R. E., Hansson, L. O., Nilsson, O., Dijlai-Merzoug, R. & Settergren, G. High serum S100B levels for trauma patients without head injuries. Neurosurgery48, 1255–1260 (2001). CASPubMed Google Scholar
Romner, B. & Ingebrigtsen, T. High serum S100B levels for trauma patients without head injuries. Neurosurgery49, 1490–1493 (2001). ArticleCASPubMed Google Scholar
Stalnacke, B. M., Ohlsson, A., Tegner, Y. & Sojka, P. Serum concentrations of two biochemical markers of brain tissue damage S-100B and neurone specific enolase are increased in elite female soccer players after a competitive game. Br. J. Sports Med.40, 313–316 (2006). ArticlePubMedPubMed Central Google Scholar
Blyth, B. J. et al. Elevated serum ubiquitin carboxy-terminal hydrolase L1 is associated with abnormal blood–brain barrier function after traumatic brain injury. J. Neurotrauma28, 2453–2462 (2011). ArticlePubMed Google Scholar
Metting, Z., Wilczak, N., Rodiger, L. A., Schaaf, J. M. & van der Naalt, J. GFAP and S100B in the acute phase of mild traumatic brain injury. Neurology78, 1428–1433 (2012). ArticleCASPubMed Google Scholar
Berger, R. P. et al. Serum neuron-specific enolase, S100B, and myelin basic protein concentrations after inflicted and noninflicted traumatic brain injury in children. J. Neurosurg.103, 161–68 (2005). Google Scholar
Zurek, J. & Fedora, M. The usefulness of S100B, NSE, GFAP, NF-H, secretagogin and Hsp70 as a predictive biomarker of outcome in children with traumatic brain injury. Acta Neurochir. (Wien)154, 193–103 (2012). Article Google Scholar
Zurek, J., Bartlova, L. & Fedora, M. Hyperphosphorylated neurofilament NF-H as a predictor of mortality after brain injury in children. Brain Inj.25, 221–226 (2011). ArticlePubMed Google Scholar
Tisdall, M. & Petzold, A. Comment on “chronic traumatic encephalopathy in blast-exposed military veterans and a blast neurotrauma mouse model”. Sci. Transl. Med.4, 157le158 (2012). Article Google Scholar
Riederer, B. M., Zagon, I. S. & Goodman, S. R. Brain spectrin(240/235) and brain spectrin(240/235E): two distinct spectrin subtypes with different locations within mammalian neural cells. J. Cell Biol.102, 2088–2097 (1986). ArticleCASPubMed Google Scholar
Pike, B. R. et al. Accumulation of non-erythroid α II-spectrin and calpain-cleaved α II-spectrin breakdown products in cerebrospinal fluid after traumatic brain injury in rats. J. Neurochem.78, 1297–1306 (2001). ArticleCASPubMed Google Scholar
Pineda, J. A. et al. Clinical significance of αII-spectrin breakdown products in cerebrospinal fluid after severe traumatic brain injury. J. Neurotrauma24, 354–366 (2007). ArticlePubMed Google Scholar
Farkas, O. et al. Spectrin breakdown products in the cerebrospinal fluid in severe head injury—preliminary observations. Acta Neurochir. (Wien)147, 855–861 (2005). ArticleCAS Google Scholar
Mondello, S. et al. αII-spectrin breakdown products (SBDPs): diagnosis and outcome in severe traumatic brain injury patients. J. Neurotrauma27, 1203–1213 (2010). ArticlePubMedPubMed Central Google Scholar
Wilkinson, K. D. et al. The neuron-specific protein PGP 9.5 is a ubiquitin carboxyl-terminal hydrolase. Science246, 670–673 (1989). ArticleCASPubMed Google Scholar
Papa, L. et al. Serum levels of ubiquitin C-terminal hydrolase distinguish mild traumatic brain injury from trauma controls and are elevated in mild and moderate traumatic brain injury patients with intracranial lesions and neurosurgical intervention. J. Trauma Acute Care Surg.72, 1335–1344 (2012). ArticlePubMedPubMed Central Google Scholar
Pasinetti, G. M., Ho, L., Dooley, C., Abbi, B. & Lange, G. Select non-coding RNA in blood components provide novel clinically accessible biological surrogates for improved identification of traumatic brain injury in OEF/OIF veterans. Am. J. Neurodegener. Dis.1, 88–98 (2012). PubMedPubMed Central Google Scholar
Corsellis, J. A., Bruton, C. J. & Freeman-Browne, D. The aftermath of boxing. Psychol. Med.3, 270–303 (1973). ArticleCASPubMed Google Scholar
Pollock, N. J., Mirra, S. S., Binder, L. I., Hansen, L. A. & Wood, J. G. Filamentous aggregates in Pick's disease, progressive supranuclear palsy, and Alzheimer's disease share antigenic determinants with microtubule-associated protein, tau. Lancet2, 1211 (1986). ArticleCASPubMed Google Scholar
Hampel, H. et al. Measurement of phosphorylated tau epitopes in the differential diagnosis of Alzheimer disease: a comparative cerebrospinal fluid study. Arch. Gen. Psychiatry61, 95–102 (2004). ArticleCASPubMed Google Scholar
Hall, S. et al. Accuracy of a panel of 5 cerebrospinal fluid biomarkers in the differential diagnosis of patients with dementia and/or parkinsonian disorders. Arch. Neurol., 27, 1–8 (2012). Google Scholar
Dickson, D. W., Kouri, N., Murray, M. E. & Josephs, K. A. Neuropathology of frontotemporal lobar degeneration-tau (FTLD-tau). J. Mol. Neurosci.45, 384–389 (2011). ArticleCASPubMedPubMed Central Google Scholar
King, A. et al. Abnormal TDP-43 expression is identified in the neocortex in cases of dementia pugilistica, but is mainly confined to the limbic system when identified in high and moderate stages of Alzheimer's disease. Neuropathology30, 408–419 (2010). ArticlePubMed Google Scholar
McKee, A. C. et al. TDP-43 proteinopathy and motor neuron disease in chronic traumatic encephalopathy. J. Neuropathol. Exp. Neurol.69, 918–929 (2010). ArticleCASPubMed Google Scholar
Neumann, M. et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science314, 130–133 (2006). ArticleCASPubMed Google Scholar
Geser, F. et al. On the development of markers for pathological TDP-43 in amyotrophic lateral sclerosis with and without dementia. Prog. Neurobiol.95, 649–662 (2011). ArticleCASPubMedPubMed Central Google Scholar
Guerrero, A. F. & Alfonso, A. Traumatic brain injury-related hypopituitarism: a review and recommendations for screening combat veterans. Mil. Med.175, 574–580 (2010). ArticlePubMed Google Scholar
Kelestimur, F. et al. Boxing as a sport activity associated with isolated GH deficiency. J. Endocrinol. Invest.27, RC28–RC32 (2004). ArticleCASPubMed Google Scholar
Tanriverdi, F. et al. Brief communication: pituitary volume and function in competing and retired male boxers. Ann. Intern. Med.148, 827–831 (2008). ArticlePubMed Google Scholar
Tanriverdi, F. et al. Kickboxing sport as a new cause of traumatic brain injury-mediated hypopituitarism. Clin. Endocrinol. (Oxf.)66, 360–366 (2007). Article Google Scholar
Wilkinson, C. W. et al. High prevalence of chronic pituitary and target-organ hormone abnormalities after blast-related mild traumatic brain injury. Front. Neurol.3, 11 (2012). ArticlePubMedPubMed Central Google Scholar