Guest Column: NP-complete problems and physical reality (original) (raw)

Authors Info & Claims

Published: 01 March 2005 Publication History

Abstract

Can NP-complete problems be solved efficiently in the physical universe? I survey proposals including soap bubbles, protein folding, quantum computing, quantum advice, quantum adiabatic algorithms, quantum-mechanical nonlinearities, hidden variables, relativistic time dilation, analog computing, Malament-Hogarth spacetimes, quantum gravity, closed timelike curves, and "anthropic computing." The section on soap bubbles even includes some "experimental" results. While I do not believe that any of the proposals will let us solve NP-complete problems efficiently, I argue that by studying them, we can learn something not only about computation but also about physics.

References

[1]

S. Aaronson. Quantum lower bound for the collision problem. In Proc. ACM STOC, pages 635--642, 2002. quant-ph/0111102.

[2]

S. Aaronson. Limitations of quantum advice and one-way communication. Theory of Computing, 2004. To appear. Conference version in Proc. IEEE Complexity 2004, pp. 320--332. quant-ph/0402095.

[3]

S. Aaronson. Limits on Efficient Computation in the Physical World. PhD thesis, University of California, Berkeley, 2004.

[4]

S. Aaronson. Quantum computing and hidden variables. Accepted to Phys. Rev. A. quant-ph/0408035 and quant-ph/0408119, 2004.

[5]

S. Aaronson. Quantum computing, postselection, and probabilistic polynomial-time. Submitted. quant-ph/0412187, 2004.

[6]

D. S. Abrams and S. Lloyd. Nonlinear quantum mechanics implies polynomial-time solution for NP-complete and #P problems. Phys. Rev. Lett., 81:3992--3995, 1998. quant-ph/9801041.

[7]

D. Aharonov, V. Jones, and Z. Landau. On the quantum algorithm for approximating the Jones polynomial. Unpublished, 2005.

[8]

E. Allender, H. Buhrman, and M. Koucký. What can be efficiently reduced to the Kolmogorov-random strings? In Proc. Intl. Symp. on Theoretical Aspects of Computer Science (STACS), pages 584--595, 2004. To appear in Annals of Pure and Applied Logic.

[9]

A. Ambainis. Quantum lower bounds by quantum arguments. J. Comput. Sys. Sci., 64:750--767, 2002. Earlier version in ACM STOC 2000. quant-ph/0002066.

[10]

D. Bacon. Quantum computational complexity in the presence of closed timelike curves. quant-ph/0309189, 2003.

[11]

T. Baker, J. Gill, and R. Solovay. Relativizations of the P=?NP question. SIAM J. Comput., 4:431--442, 1975.

[12]

E. B. Baum. What Is Thought? Bradford Books, 2004.

[13]

R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf. Quantum lower bounds by polynomials. J. ACM, 48(4):778--797, 2001. Earlier version in IEEE FOCS 1998, pp. 352--361. quant-ph/9802049.

[14]

J. E. Beasley. OR-Library (test data sets for operations research problems), 1990. At www.brunel.ac.uk/depts/ma/research/jeb/info.html.

[15]

R. Beigel, N. Reingold, and D. Spielman. PP is closed under intersection. J. Comput. Sys. Sci., 50(2):191--202, 1995.

[16]

J. D. Bekenstein. A universal upper bound on the entropy to energy ratio for bounded systems. Phys. Rev. D, 23(2):287--298, 1981.

[17]

C. Bennett, E. Bernstein, G. Brassard, and U. Vazirani. Strengths and weaknesses of quantum computing. SIAM J. Comput., 26(5):1510--1523, 1997. quant-ph/9701001.

[18]

L. Blum, F. Cucker, M. Shub, and S. Smale. Complexity and Real Computation. Springer-Verlag, 1997.

[19]

J. de Boer. Introduction to the AdS/CFT correspondence. University of Amsterdam Institute for Theoretical Physics (ITFA) Technical Report 03-02, 2003.

[20]

D. Bohm. A suggested interpretation of the quantum theory in terms of "hidden" variables. Phys. Rev., 85:166--193, 1952.

[21]

R. B. Boppana, J. Håstad, and S. Zachos. Does co-NP have short interactive proofs? Inform. Proc. Lett., 25:127--132, 1987.

[22]

M. Born. Zur Quantenmechanik der Stoßvorgänge. Zeitschrift für Physik, 37:863--867, 1926. English translation in Quantum Theory and Measurement (J. A. Wheeler and W. H. Zurek, eds.), Princeton, 1983, pp. 52--55.

[23]

R. Bousso. The holographic principle. Reviews of Modern Physics, 74(3), 2002. hep-th/0203101.

[24]

S. Bringsjord and J. Taylor. P=NP. 2004. cs.CC/0406056.

[25]

T. Brun. Computers with closed timelike curves can solve hard problems. Foundations of Physics Letters, 16:245--253, 2003. gr-qc/0209061.

[26]

P. Bürgisser, M. Clausen, and M. A. Shokrollahi. Algebraic Complexity Theory. Springer-Verlag, 1997.

[27]

J. D. Christensen and C. Egan. An efficient algorithm for the Riemannian 10j symbols. Classical and Quantum Gravity, 19:1184--1193, 2002. gr-qc/0110045.

[28]

J. Copeland. Hypercomputation. Minds and Machines, 12:461--502, 2002.

[29]

D. Deutsch. Quantum mechanics near closed timelike lines. Phys. Rev. D, 44:3197--3217, 1991.

[30]

G. Egan. Quarantine: A Novel of Quantum Catastrophe. Eos, 1995. First printing 1992.

[31]

E. Farhi, J. Goldstone, and S. Gutmann. Quantum adiabatic evolution algorithms versus simulated annealing. quant-ph/0201031, 2002.

[32]

E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, and D. Preda. A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science, 292:472--476, 2001. quant-ph/0104129.

[33]

C. Feinstein. Post to comp. theory newsgroup on July 8, 2004.

[34]

C. Feinstein. Evidence that P is not equal to NP. cs.CC/.0310060, 2003.

[35]

L. Fortnow. One complexity theorist's view of quantum computing. Theoretical Comput. Sci., 292(3):597--610, 2003.

[36]

M. Freedman, A. Kitaev, and Z. Wang. Simulation of topological quantum field theories by quantum computers. Commun. Math. Phys., 227:587--603, 2002. quant-ph/0001071.

[37]

M. Freedman, M. Larsen, and Z. Wang. A modular functor which is universal for quantum computation. Commun. Math. Phys., 227:605--622, 2002. quant-ph/0001108.

[38]

M. R. Garey, R. L. Graham, and D. S. Johnson. Some NP-complete geometric problems. In Proc. ACM STOC, pages 10--22, 1976.

[39]

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, 1979.

[40]

W. Gasarch. The P=?NP poll. SIGACT News, 33(2):34--47, June 2002.

[41]

N. Gisin. Weinberg's non-linear quantum mechanics and superluminal communications. Phys. Lett. A, 143:1--2, 1990.

[42]

D. Gottesman and J. Preskill. Comment on "The black hole final state". J. High Energy Phys., (0403:026), 2004. hep-th/0311269.

[43]

L. K. Grover. A fast quantum mechanical algorithm for database search. In Proc. ACM STOC, pages 212--219, 1996. quant-ph/9605043.

[44]

G. Gutoski and J. Watrous. Quantum interactive proofs with competing provers. To appear in STACS 2005. cs.CC/0412102, 2004.

[45]

Y. Han, L. Hemaspaandra, and T. Thierauf. Threshold computation and cryptographic security. SIAM J. Comput., 26(1):59--78, 1997.

[46]

M. Hogarth. Non-Turing computers and non-Turing computability. Biennial Meeting of the Philosophy of Science Association, 1:126--138, 1994.

[47]

J. Horgan. The End of Science. Helix Books, 1997.

[48]

G. Horowitz and J. Maldacena. The black hole final state. J. High Energy Phys., (0402:008), 2004. hep-th/0310281.

[49]

R. Impagliazzo and A. Wigderson. P=BPP unless E has subexponential circuits: derandomizing the XOR Lemma. In Proc. ACM STOC, pages 220--229, 1997.

[50]

Clay Math Institute. Millennium prize problems, 2000. www.claymath.org/millennium/.

[51]

V. Kabanets and J.-Y. Cai. Circuit minimization problem. In Proc. ACM STOC, pages 73--79, 2000. TR99-045.

[52]

R. M. Karp and R. J. Lipton. Turing machines that take advice. Enseign. Math., 28:191--201, 1982.

[53]

T. D. Kieu. Quantum algorithm for hilbert's tenth problem. Intl. Journal of Theoretical Physics, 42:1461--1478, 2003. quant-ph/0110136.

[54]

L. A. Levin. Average case complete problems. SIAM J. Comput., 15(1):285--286, 1986.

[55]

L. A. Levin. Polynomial time and extravagant models, in The tale of one-way functions. Problems of Information Transmission, 39(1):92--103, 2003. cs.CR/0012023.

[56]

G. Midrijanis. A polynomial quantum query lower bound for the set equality problem. In Proc. Intl. Colloquium on Automata, Languages, and Programming (ICALP), pages 996--1005, 2004. quant-ph/0401073.

[57]

M. Nielsen and I. Chuang. Quantum Computation and Quantum Information. Cambridge University Press, 2000.

[58]

R. Penrose. Angular momentum: an approach to combinatorial spacetime. In T. Bastin, editor, Quantum Theory and Beyond. Cambridge, 1971.

[59]

J. Polchinski. Weinberg's nonlinear quantum mechanics and the Einstein-Podolsky-Rosen paradox. Phys. Rev. Lett., 66:397--400, 1991.

[60]

J. Preskill. Quantum computation and the future of physics. Talk at UC Berkeley, May 10, 2002.

[61]

A. A. Razborov and S. Rudich. Natural proofs. J. Comput. Sys Sci., 55(1):24--35, 1997.

[62]

B. Reichardt. The quantum adiabatic optimization algorithm and local minima. In Proc. ACM STOC, pages 502--510, 2004.

[63]

A. Schönhage. On the power of random access machines. In Proc. Intl. Colloquium on Automata, Languages, and Programming (ICALP), pages 520--529, 1979.

[64]

Y. Shi. Quantum lower bounds for the collision and the element distinctness problems. In Proc. IEEE FOCS, pages 513--519, 2002. quant-ph/0112086.

[65]

P. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput., 26(5):1484--1509, 1997. Earlier version in IEEE FOCS 1994. quant-ph/9508027.

[66]

D. Simon. On the power of quantum computation. In Proc. IEEE FOCS, pages 116--123, 1994.

[67]

T. P. Singh. Gravitational collapse, black holes, and naked singularities. In Proceedings of Discussion Workshop on Black Holes, Bangalore, India, Dec 1997. gr-qc/9805066.

[68]

M. Sipser. The history and status of the P versus NP question. In Proc. ACM STOC, pages 603--618, 1992.

[69]

L. Smolin. The present moment in quantum cosmology: challenges to arguments for the elimination of time. In R. Durie, editor, Time and the Instant. Clinamen Press, 2000. gr-qc/0104097.

[70]

L. J. Stockmeyer and A. R. Meyer. Cosmological lower bound on the circuit complexity of a small problem in logic. J. ACM, 49(6):753--784, 2002.

[71]

A. Valentini. On the Pilot-Wave Theory of Classical, Quantum, and Subquantum Physics. PhD thesis, International School for Advanced Studies, 1992.

[72]

A. Valentini. Subquantum information and computation. Pramana J. Physics, 59(2):269--277, 2002. quant-ph/0203049.

[73]

W. van Dam, M. Mosca, and U. Vazirani. How powerful is adiabatic quantum computation? In Proc. IEEE FOCS, pages 279--287, 2001. quant-ph/0206003.

[74]

A. Vergis, K. Steiglitz, and B. Dickinson. The complexity of analog computation. Mathematics and Computers in Simulation, 28(91--113), 1986.

[75]

D. L. Vertigan and D. J. A. Welsh. The computational complexity of the Tutte plane: the bipartite case. Combinatorics, Probability, and Computing, 1(2), 1992.

[76]

S. Weinberg. Precision tests of quantum mechanics. Phys. Rev. Lett., 62:485--488, 1989.

Information & Contributors

Information

Published In

cover image ACM SIGACT News

ACM SIGACT News Volume 36, Issue 1

March 2005

101 pages

Copyright © 2005 Author.

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 March 2005

Published in SIGACT Volume 36, Issue 1

Check for updates

Qualifiers

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

Reflects downloads up to 24 Sep 2024

Other Metrics

Citations

View Options

Get Access

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Affiliations

Scott Aaronson

University of Rochester, Rochester, NY