The APOBEC-2 crystal structure and functional implications for the deaminase AID (original) (raw)

References

  1. Pham, P., Bransteitter, R. & Goodman, M. F. Reward versus risk: DNA cytidine deaminases triggering immunity and disease. Biochemistry 44, 2703–2715 (2005)
    Article CAS Google Scholar
  2. Conticello, S. G., Thomas, C. J. F., Petersen-Mahrt, S. K. & Neuberger, M. S. Evolution of the AID/APOBEC family of polynucleotide (deoxy)cytidine deaminases. Mol. Biol. Evol. 22, 367–377 (2004)
    Article Google Scholar
  3. Bransteitter, R., Sneeden, J. L., Allen, S., Pham, P. & Goodman, O. M. F. First AID (activation-induced cytidine deaminase) is needed to produce high affinity isotype-switched antibodies. J. Biol. Chem. 281, 16833–16836 (2006)
    Article CAS Google Scholar
  4. Chiu, Y. L. & Greene, W. C. Multifaceted antiviral actions of APOBEC3 cytidine deaminases. Trends Immunol. 27, 291–297 (2006)
    Article CAS Google Scholar
  5. Cullen, B. R. Role and mechanism of action of the APOBEC3 family of antiretroviral resistance factors. J. Virol. 80, 1067–1076 (2006)
    Article CAS Google Scholar
  6. Franca, R., Spadari, S. & Maga, G. APOBEC deaminases as cellular antiviral factors: a novel natural host defense mechanism. Med. Sci. Monit. 12, RA92–RA98 (2006)
    CAS PubMed Google Scholar
  7. Bonvin, M. et al. Interferon-inducible expression of APOBEC3 editing enzymes in human hepatocytes and inhibition of hepatitis B virus replication. Hepatology 43, 1364–1374 (2006)
    Article CAS Google Scholar
  8. Johansson, E., Mejlhede, N., Neuhard, J. & Larsen, S. Crystal structure of the tetrameric cytidine deaminase from Bacillus subtilis at 2.0 Å resolution. Biochemistry 41, 2563–2570 (2002)
    Article CAS Google Scholar
  9. Xie, K. et al. The structure of a yeast RNA-editing deaminase provides insight into the fold and function of activation-induced deaminase and APOBEC-1. Proc. Natl Acad. Sci. USA 101, 8114–8119 (2004)
    Article ADS CAS Google Scholar
  10. Teh, A. et al. The 1.48 Å resolution crystal structure of the homotetrameric cytidine deaminase from mouse. Biochemistry 45, 7825–7833 (2006)
    Article CAS Google Scholar
  11. Chung, S. J., Fromme, J. C. & Verdine, G. L. Structure of human cytidine deaminase bound to a potent inhibitor. J. Med. Chem. 48, 658–660 (2005)
    Article CAS Google Scholar
  12. Betts, L., Xiang, S., Short, S. A., Wolfenden, R. & Carter, C. W. Cytidine deaminase. The 2.3 Å crystal structure of an enzyme: transition-state analog complex. Curr. Biol. 235, 635–656 (1994)
    CAS Google Scholar
  13. Smith, A. A., Carlow, D. C., Wolfenden, R. & Short, S. A. Mutations affecting transition-state stabilization by residues coordinating zinc at the active site of cytidine deaminase. Biochemistry 33, 6468–6474 (1994)
    Article CAS Google Scholar
  14. Durandy, A., Peron, S. & Fischer, A. Hyper-IgM syndromes. Curr. Opin. Rheumatol. 18, 369–376 (2006)
    Article CAS Google Scholar
  15. Minegishi, Y. et al. Mutations in activation-induced cytidine deaminase in patients with hyper IgM syndrome. Clin. Immunol. 97, 203–210 (2000)
    Article CAS Google Scholar
  16. Anant, S. et al. ARCD-1, an apobec-1-related cytidine deaminase, exerts a dominant negative effect on C to U RNA editing. Am. J. Cell Physiol. 281, C1904–C1916 (2001)
    Article CAS Google Scholar
  17. Jarmuz, A. et al. An anthropoid-specific locus of orphan C to U RNA-editing enzymes on chromosome 22. Genomics 79, 285–296 (2002)
    Article CAS Google Scholar
  18. Shindo, K. et al. The enzymatic activity of CEM15/Apobec-3G is essential for the regulation of the infectivity of HIV-1 virion but not a sole determinant of its antiviral activity. J. Biol. Chem. 278, 44412–44416 (2003)
    Article CAS Google Scholar
  19. Wiegand, H. L., Doehle, B. P., Bogerd, H. P. & Cullen, B. R. A second human antiretroviral factor, APOBEC3F, is suppressed by the HIV-1 and HIV-2 Vif proteins. EMBO J. 23, 2451–2458 (2004)
    Article CAS Google Scholar
  20. Opi, S. et al. Monomeric APOBEC3G is catalytically active and has antiviral activity. J. Virol. 80, 4673–4682 (2006)
    Article CAS Google Scholar
  21. Navarro, F. et al. Complementary function of the two catalytic domains of APOBEC3G. Virology 333, 374–386 (2005)
    Article CAS Google Scholar
  22. Wang, J. et al. Identification of a specific domain required for dimerization of activation-induced cytidine deaminase. J. Biol. Chem. (in the press).
  23. Teng, B. et al. Mutational analysis of apolipoprotein B mRNA editing enzyme (APOBEC1): structure-function relationships of RNA editing and dimerization. J. Lipid Res. 40, 623–635 (1999)
    CAS PubMed Google Scholar
  24. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)
    Article CAS Google Scholar
  25. Terwilliger, T. C. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. 55, 849–861 (1999)
    Article CAS Google Scholar
  26. Schneider, T. R. & Sheldrick, G. M. Substructure solution with SHELXD. Acta Crystallogr. 58, 1772–1779 (2002)
    Article Google Scholar
  27. Terwilliger, T. C. Maximum-likelihood density modification. Acta Crystallogr. 56, 965–972 (2000)
    CAS Google Scholar
  28. Bransteitter, R., Pham, P., Scharff, M. D. & Goodman, M. F. Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase. Proc. Natl Acad. Sci. USA 100, 4102–4107 (2003)
    Article ADS CAS Google Scholar

Download references