clogf, clog, clogl - cppreference.com (original) (raw)

Defined in header <complex.h>
float complex clogf( float complex z ); (1) (since C99)
double complex clog( double complex z ); (2) (since C99)
long double complex clogl( long double complex z ); (3) (since C99)
Defined in header <tgmath.h>
#define log( z ) (4) (since C99)

1-3) Computes the complex natural (base-e) logarithm of z with branch cut along the negative real axis.

  1. Type-generic macro: If z has type long double complex, clogl is called. if z has type double complex, clog is called, if z has type float complex, clogf is called. If z is real or integer, then the macro invokes the corresponding real function (logf, log, logl). If z is imaginary, the corresponding complex number version is called.

Contents

[edit] Parameters

[edit] Return value

If no errors occur, the complex natural logarithm of z is returned, in the range of a strip in the interval [−iπ, +iπ] along the imaginary axis and mathematically unbounded along the real axis.

[edit] Error handling and special values

Errors are reported consistent with math_errhandling

If the implementation supports IEEE floating-point arithmetic,

[edit] Notes

The natural logarithm of a complex number z with polar coordinate components (r,θ) equals ln r + i(θ+2nπ), with the principal value ln r + iθ

[edit] Example

#include <stdio.h> #include <math.h> #include <complex.h>   int main(void) { double complex z = clog(I); // r = 1, θ = pi/2 printf("2log(i) = %.1f%+fi\n", creal(2z), cimag(2z));   double complex z2 = clog(sqrt(2)/2 + sqrt(2)/2I); // r = 1, θ = pi/4 printf("4log(sqrt(2)/2+sqrt(2)i/2) = %.1f%+fi\n", creal(4z2), cimag(4*z2));   double complex z3 = clog(-1); // r = 1, θ = pi printf("log(-1+0i) = %.1f%+fi\n", creal(z3), cimag(z3));   double complex z4 = clog(conj(-1)); // or clog(CMPLX(-1, -0.0)) in C11 printf("log(-1-0i) (the other side of the cut) = %.1f%+fi\n", creal(z4), cimag(z4)); }

Output:

2log(i) = 0.0+3.141593i 4log(sqrt(2)/2+sqrt(2)i/2) = 0.0+3.141593i log(-1+0i) = 0.0+3.141593i log(-1-0i) (the other side of the cut) = 0.0-3.141593i

[edit] References

[edit] See also