std::equal - cppreference.com (original) (raw)
Checks whether [
first1,
last1)
and a range starting from first2 are equal:
- For overloads (1-4), the second range has std::distance(first1, last1) elements.
- For overloads (5-8), the second range is
[
first2,
last2)
.
1,5) Elements are compared using operator==.
3,7) Elements are compared using the given binary predicate p.
2,4,6,8) Same as (1,3,5,7), but executed according to policy.
These overloads participate in overload resolution only if all following conditions are satisfied:
Contents
- 1 Parameters
- 2 Return value
- 3 Complexity
- 4 Exceptions
- 5 Possible implementation
- 6 Notes
- 7 Example
- 8 See also
[edit] Parameters
first1, last1 | - | the pair of iterators defining the first range of elements to compare |
---|---|---|
first2, last2 | - | the pair of iterators defining the second range of elements to compare |
policy | - | the execution policy to use |
p | - | binary predicate which returns true if the elements should be treated as equal. The signature of the predicate function should be equivalent to the following: bool pred(const Type1 &a, const Type2 &b); While the signature does not need to have const &, the function must not modify the objects passed to it and must be able to accept all values of type (possibly const) Type1 and Type2 regardless of value category (thus, Type1 & is not allowed, nor is Type1 unless for Type1 a move is equivalent to a copy(since C++11)).The types Type1 and Type2 must be such that objects of types InputIt1 and InputIt2 can be dereferenced and then implicitly converted to Type1 and Type2 respectively. |
Type requirements | ||
-InputIt1, InputIt2 must meet the requirements of LegacyInputIterator. | ||
-ForwardIt1, ForwardIt2 must meet the requirements of LegacyForwardIterator. | ||
-BinaryPred must meet the requirements of BinaryPredicate. |
[edit] Return value
1-4) If each corresponding elements in the two ranges are equal, returns true. Otherwise returns false.
5-8) If std::distance(first1, last1) and std::distance(first2, last2) are equal, and each corresponding elements in the two ranges are equal, returns true. Otherwise returns false.
[edit] Complexity
Given \(\scriptsize N_1\)N1 as std::distance(first1, last1) and \(\scriptsize N_2\)N2 as std::distance(first2, last2):
At most \(\scriptsize N_1\)N1 comparisons using operator==.
\(\scriptsize O(N_1)\)O(N1) comparisons using operator==.
At most \(\scriptsize N_1\)N1 applications of the predicate p.
\(\scriptsize O(N_1)\)O(N1) applications of the predicate p.
5-8) If InputIt1
and InputIt2
are both LegacyRandomAccessIterator, and last1 - first1 != last2 - first2 is true, no comparison will be made.
Otherwise, given \(\scriptsize N\)N as \(\scriptsize \min(N_1,N_2)\)min(N1,N2):
At most \(\scriptsize N\)N comparisons using operator==.
\(\scriptsize O(N)\)O(N) comparisons using operator==.
At most \(\scriptsize N\)N applications of the predicate p.
\(\scriptsize O(N)\)O(N) applications of the predicate p.
[edit] Exceptions
The overloads with a template parameter named ExecutionPolicy
report errors as follows:
- If execution of a function invoked as part of the algorithm throws an exception and
ExecutionPolicy
is one of the standard policies, std::terminate is called. For any otherExecutionPolicy
, the behavior is implementation-defined. - If the algorithm fails to allocate memory, std::bad_alloc is thrown.
[edit] Possible implementation
equal (1) |
---|
template<class InputIt1, class InputIt2> constexpr //< since C++20 bool equal(InputIt1 first1, InputIt1 last1, InputIt2 first2) { for (; first1 != last1; ++first1, ++first2) if (!(*first1 == *first2)) return false; return true; } |
equal (3) |
template<class InputIt1, class InputIt2, class BinaryPred> constexpr //< since C++20 bool equal(InputIt1 first1, InputIt1 last1, InputIt2 first2, BinaryPred p) { for (; first1 != last1; ++first1, ++first2) if (!p(*first1, *first2)) return false; return true; } |
equal (5) |
namespace detail { // random-access iterator implementation (allows quick range size detection) template<class RandomIt1, class RandomIt2> constexpr //< since C++20 bool equal(RandomIt1 first1, RandomIt1 last1, RandomIt2 first2, RandomIt2 last2, std::random_access_iterator_tag, std::random_access_iterator_tag) { if (last1 - first1 != last2 - first2) return false; for (; first1 != last1; ++first1, ++first2) if (!(*first1 == *first2)) return false; return true; } // input iterator implementation (needs to manually compare with “last2”) template<class InputIt1, class InputIt2> constexpr //< since C++20 bool equal(InputIt1 first1, InputIt1 last1, InputIt2 first2, InputIt2 last2, std::input_iterator_tag, std::input_iterator_tag) { for (; first1 != last1 && first2 != last2; ++first1, ++first2) if (!(*first1 == *first2)) return false; return first1 == last1 && first2 == last2; } } template<class InputIt1, class InputIt2> constexpr //< since C++20 bool equal(InputIt1 first1, InputIt1 last1, InputIt2 first2, InputIt2 last2) { details::equal(first1, last1, first2, last2, typename std::iterator_traits<InputIt1>::iterator_category(), typename std::iterator_traits<InputIt2>::iterator_category()); } |
equal (7) |
namespace detail { // random-access iterator implementation (allows quick range size detection) template<class RandomIt1, class RandomIt2, class BinaryPred> constexpr //< since C++20 bool equal(RandomIt1 first1, RandomIt1 last1, RandomIt2 first2, RandomIt2 last2, BinaryPred p, std::random_access_iterator_tag, std::random_access_iterator_tag) { if (last1 - first1 != last2 - first2) return false; for (; first1 != last1; ++first1, ++first2) if (!p(*first1, *first2)) return false; return true; } // input iterator implementation (needs to manually compare with “last2”) template<class InputIt1, class InputIt2, class BinaryPred> constexpr //< since C++20 bool equal(InputIt1 first1, InputIt1 last1, InputIt2 first2, InputIt2 last2, BinaryPred p, std::input_iterator_tag, std::input_iterator_tag) { for (; first1 != last1 && first2 != last2; ++first1, ++first2) if (!p(*first1, *first2)) return false; return first1 == last1 && first2 == last2; } } template<class InputIt1, class InputIt2, class BinaryPred> constexpr //< since C++20 bool equal(InputIt1 first1, InputIt1 last1, InputIt2 first2, InputIt2 last2, BinaryPred p) { details::equal(first1, last1, first2, last2, p, typename std::iterator_traits<InputIt1>::iterator_category(), typename std::iterator_traits<InputIt2>::iterator_category()); } |
[edit] Notes
std::equal
should not be used to compare the ranges formed by the iterators from std::unordered_set, std::unordered_multiset, std::unordered_map, or std::unordered_multimap because the order in which the elements are stored in those containers may be different even if the two containers store the same elements.
When comparing entire containers or string views(since C++17) for equality, operator== for the corresponding type are usually preferred.
Sequential std::equal
is not guaranteed to be short-circuit. E.g. if the first pair elements of both ranges do not compare equal, the rest of elements may also be compared. Non-short-circuit comparison may happen when the ranges are compared with std::memcmp or implementation-specific vectorized algorithms.
[edit] Example
The following code uses std::equal to test if a string is a palindrome.
#include #include #include #include constexpr bool is_palindrome(const std::string_view& s) { return std::equal(s.cbegin(), s.cbegin() + s.size() / 2, s.crbegin()); } void test(const std::string_view& s) { std::cout << std::quoted(s) << (is_palindrome(s) ? " is" : " is not") << " a palindrome\n"; } int main() { test("radar"); test("hello"); }
Output:
"radar" is a palindrome "hello" is not a palindrome
[edit] See also
findfind_iffind_if_not(C++11) | finds the first element satisfying specific criteria (function template) [edit] |
---|---|
lexicographical_compare | returns true if one range is lexicographically less than another (function template) [edit] |
mismatch | finds the first position where two ranges differ (function template) [edit] |
search | searches for the first occurrence of a range of elements (function template) [edit] |
ranges::equal(C++20) | determines if two sets of elements are the same(algorithm function object)[edit] |
equal_to | function object implementing x == y (class template) [edit] |
equal_range | returns range of elements matching a specific key (function template) [edit] |