std::seed_seq::generate - cppreference.com (original) (raw)

| template< class RandomIt > void generate( RandomIt begin, RandomIt end ); | | (since C++11) | | -------------------------------------------------------------------------- | | ------------- |

Generate unbiased seeds by filling the output range [begin, end) with 32-bit unsigned integer values, based on the (possibly biased) seeds stored in _[v](/w/cpp/numeric/random/seed%5Fseq#v "cpp/numeric/random/seed seq")_.

If std::iterator_traits<RandomIt>::value_type is not an unsigned integer type, or its width is less than 32, the program is ill-formed.

If RandomIt does not meet the requirements of LegacyRandomAccessIterator, or it is not mutable, the behavior is undefined.

Contents

[edit] Generation algorithm

Given the following values and operations:

Value Definition
z v .size()
n end - begin
m std::max(z + 1, n)
t (n >= 623) ? 11 : (n >= 68) ? 7 : (n >= 39) ? 5 : (n >= 7) ? 3 : (n - 1) / 2
p (n - t) / 2
q p + t
Operation Definition
\(\scriptsize \mathsf{xor} \)xor built-in bitwise XOR
\(\scriptsize \mathsf{rshift} \)rshift built-in bitwise right-shift
\(\scriptsize T(x) \)T(x) \(\scriptsize x\ \mathsf{xor}\ (x\ \mathsf{rshift}\ 27) \)x xor (x rshift 27)

The generation algorithm consists of the following steps, where \(\scriptsize S_i \)Si denotes begin[i % n], \(\scriptsize V_i \)Vi denotes _[v](/w/cpp/numeric/random/seed%5Fseq#v "cpp/numeric/random/seed seq")_ [i]:

  1. Set each element of the output range to the value 0x8b8b8b8b.

  2. For each integer k in [​0​, m), performs the following operations in order:

  3. Let \(\scriptsize r_1 \)r1 be \(\scriptsize 1664525 \cdot T(S_k\ \mathsf{xor}\ S_{k+p}\ \mathsf{xor}\ S_{k-1}) \)1664525·T(Sk xor Sk+p xor Sk-1).

  4. Let \(\scriptsize r_2 \)r2 be \(\scriptsize r_1 + j \)r1+j, where \(\scriptsize j \)j is:

  1. Set \(\scriptsize S_{k+p} \)Sk+p to \(\scriptsize (S_{k+p}+r_1) \mod 2^{32} \)(Sk+p+r1) mod 232
    .

  2. Set \(\scriptsize S_{k+q} \)Sk+q to \(\scriptsize (S_{k+q}+r_2) \mod 2^{32} \)(Sk+q+r2) mod 232
    .

  3. Set \(\scriptsize S_k \)Sk to \(\scriptsize r_2 \mod 2^{32} \)r2 mod 232
    .

  4. For each integer k in [m, m + n), performs the following operations in order:

  5. Let \(\scriptsize r_3 \)r3 be \(\scriptsize 1566083941 \cdot T(S_k+S_{k+p}+S_{k-1}) \)1566083941·T(Sk+Sk+p+Sk-1).

  6. Let \(\scriptsize r_4 \)r4 be \(\scriptsize r_3-(k \mod n) \)r3-(k mod n).

  7. Set \(\scriptsize S_{k+p} \)Sk+p to \(\scriptsize (S_{k+p}\ \mathsf{xor}\ r_3) \mod 2^{32} \)(Sk+p xor r3) mod 232
    .

  8. Set \(\scriptsize S_{k+q} \)Sk+q to \(\scriptsize (S_{k+q}\ \mathsf{xor}\ r_4) \mod 2^{32} \)(Sk+q xor r4) mod 232
    .

  9. Set \(\scriptsize S_k \)Sk to \(\scriptsize r_4 \mod 2^{32} \)r4 mod 232
    .

[edit] Parameters

begin, end - the iterators denoting the output range

[edit] Exceptions

Only throws the exceptions thrown by the RandomIt operations on begin and end.

[edit] Notes

The generation algorithm is adapted from the initialization sequence of the Mersenne Twister generator by Makoto Matsumoto and Takuji Nishimura, incorporating the improvements made by Mutsuo Saito in 2007.

[edit] Example

#include #include #include #include #include   // Prototyping the main part of std::seed_seq... struct seed_seq { std::vector<std::uint32_t> v;   seed_seq(std::initializer_list<std::uint32_t> const il) : v{il} {}   template void generate(RandomIt first, RandomIt last) { if (first == last) return; // // Assuming v = {1, 2, 3, 4, 5} and distance(first, last) == 10. // // Step 1: fill with 0x8b8b8b8b // seeds = {2341178251, 2341178251, 2341178251, 2341178251, 2341178251, // 2341178251, 2341178251, 2341178251, 2341178251, 2341178251} // std::fill(first, last, 0x8b8b8b8b); // // Step 2: // n = 10, s = 5, t = 3, p = 3, q = 6, m = 10 // const std::uint32_t n = last - first; const std::uint32_t s = v.size(); const std::uint32_t t = (n < 7) ? (n - 1) / 2 : (n < 39) ? 3 : (n < 68) ? 5 : (n < 623) ? 7 : 11; const std::uint32_t p = (n - t) / 2; const std::uint32_t q = p + t; const std::uint32_t m = std::max(s + 1, n); // // First iteration, k = 0; r1 = 1371501266, r2 = 1371501271 // // seeds = {1371501271, 2341178251, 2341178251, 3712679517, 2341178251, // 2341178251, 3712679522, 2341178251, 2341178251, 2341178251} // // Iterations from k = 1 to k = 5 (r2 = r1 + k % n + v[k - 1]) // // r1 = 2786190137, 3204727651, 4173325571, 1979226628, 401983366 // r2 = 2786190139, 3204727655, 4173325577, 1979226636, 401983376 // // seeds = {3350727907, 3188173515, 3204727655, 4173325577, 1979226636, // 401983376, 3591037797, 2811627722, 1652921976, 2219536532} // // Iterations from k = 6 to k = 9 (r2 = r1 + k % n) // // r1 = 2718637909, 1378394210, 2297813071, 1608643617 // r2 = 2718637915, 1378394217, 2297813079, 1608643626 // // seeds = { 434154821, 1191019290, 3237041891, 1256752498, 4277039715, // 2010627002, 2718637915, 1378394217, 2297813079, 1608643626} // auto begin_mod = first, n u) -> decltype(*first)& { return first[u % n]; // i.e. begin[x] is taken modulo n }; auto T = x) { return x ^ (x >> 27); };   for (std::uint32_t k = 0, r1, r2; k < m; ++k) { r1 = 1664525 * T(begin_mod(k) ^ begin_mod(k + p) ^ begin_mod(k - 1)); r2 = (k == 0) ? r1 + s : (k <= s) ? r1 + k % n + v[k - 1] : r1 + k % n; begin_mod(k + p) += r1; begin_mod(k + q) += r2; begin_mod(k) = r2; } // // Step 3 // iterations from k = 10 to k = 19, using ^= to modify the output // // r1 = 1615303485, 3210438310, 893477041, 2884072672, 1918321961, // r2 = 1615303485, 3210438309, 893477039, 2884072669, 1918321957 // // seeds = { 303093272, 3210438309, 893477039, 2884072669, 1918321957, // 1117182731, 1772877958, 2669970405, 3182737656, 4094066935} // // r1 = 423054846, 46783064, 3904109085, 1534123446, 1495905687 // r2 = 423054841, 46783058, 3904109078, 1534123438, 1495905678 // // seeds = { 4204997637, 4246533866, 1856049002, 1129615051, 690460811, // 1075771511, 46783058, 3904109078, 1534123438, 1495905678} // for (std::uint32_t k = m, r3, r4; k < m + n; ++k) { r3 = 1566083941 * T(begin_mod(k) + begin_mod(k + p) + begin_mod(k - 1)); r4 = r3 - k % n; begin_mod(k+p) ^= r3; begin_mod(k+q) ^= r4; begin_mod(k) = r4; } } };   int main() { const auto input = std::initializer_list<std::uint32_t>{1, 2, 3, 4, 5}; const auto output_size = 10;   // using std version of seed_seq std::seed_seq seq(input); std::vector<std::uint32_t> seeds(output_size); seq.generate(seeds.begin(), seeds.end()); for (const std::uint32_t n : seeds) std::cout << n << '\n';   // using custom version of seed_seq seed_seq seq2(input); std::vector<std::uint32_t> seeds2(output_size); seq2.generate(seeds2.begin(), seeds2.end());   assert(seeds == seeds2); }

Output:

4204997637 4246533866 1856049002 1129615051 690460811 1075771511 46783058 3904109078 1534123438 1495905678

[edit] Defect reports

The following behavior-changing defect reports were applied retroactively to previously published C++ standards.

DR Applied to Behavior as published Correct behavior
LWG 2180 C++11 seed_seq::generate is non-throwing it may throw exceptions