std::result_of, std::invoke_result - cppreference.com (original) (raw)
Defined in header <type_traits> | ||
---|---|---|
template< class > class result_of; // not defined template< class F, class... ArgTypes > class result_of<F(ArgTypes...)>; | (1) | (since C++11) (deprecated in C++17) (removed in C++20) |
template< class F, class... ArgTypes > class invoke_result; | (2) | (since C++17) |
Deduces the return type of an INVOKE expression at compile time.
F must be a callable type, reference to function, or reference to callable type. Invoking F with ArgTypes... must be a well-formed expression. | (since C++11)(until C++14) |
---|---|
F and all types in ArgTypes can be any complete type, array of unknown bound, or (possibly cv-qualified) void. | (since C++14) |
If the program adds specializations for any of the templates described on this page, the behavior is undefined.
Contents
[edit] Member types
Member type | Definition |
---|---|
type | the return type of the Callable type F if invoked with the arguments ArgTypes.... Only defined if F can be called with the arguments ArgTypes... in unevaluated context.(since C++14) |
[edit] Helper types
template< class T > using result_of_t = typename result_of<T>::type; | (1) | (since C++14) (deprecated in C++17) (removed in C++20) |
---|---|---|
template< class F, class... ArgTypes > using invoke_result_t = typename invoke_result<F, ArgTypes...>::type; | (2) | (since C++17) |
[edit] Possible implementation
namespace detail
{
template
struct is_reference_wrapper : std::false_type {};
template
struct is_reference_wrapper<std::reference_wrapper> : std::true_type {};
template
struct invoke_impl
{
template<class F, class... Args>
static auto call(F&& f, Args&&... args)
-> decltype(std::forward(f)(std::forward(args)...));
};
template<class B, class MT>
struct invoke_impl<MT B::>
{
template<class T, class Td = typename std::decay::type,
class = typename std::enable_if<std::is_base_of<B, Td>::value>::type>
static auto get(T&& t) -> T&&;
template<class T, class Td = typename std::decay::type,
class = typename std::enable_if<is_reference_wrapper::value>::type>
static auto get(T&& t) -> decltype(t.get());
template<class T, class Td = typename std::decay::type,
class = typename std::enable_if< <B, Td>::value>::type,
class = typename std::enable_if<!is_reference_wrapper
::value>::type>
static auto get(T&& t) -> decltype( std::forward(t));
template<class T, class... Args, class MT1,
class = typename std::enable_if<std::is_function::value>::type>
static auto call(MT1 B::*pmf, T&& t, Args&&... args)
-> decltype((invoke_impl::get(
std::forward(t)).*pmf)(std::forward(args)...));
template
static auto call(MT B::*pmd, T&& t)
-> decltype(invoke_impl::get(std::forward(t)).*pmd);
};
template<class F, class... Args, class Fd = typename std::decay::type>
auto INVOKE(F&& f, Args&&... args)
-> decltype(invoke_impl::call(std::forward(f),
std::forward(args)...));
} // namespace detail
// Minimal C++11 implementation:
template struct result_of;
template<class F, class... ArgTypes>
struct result_of<F(ArgTypes...)>
{
using type = decltype(detail::INVOKE(std::declval(), std::declval()...));
};
// Conforming C++14 implementation (is also a valid C++11 implementation):
namespace detail
{
template<typename AlwaysVoid, typename, typename...>
struct invoke_result {};
template<typename F, typename...Args>
struct invoke_result<
decltype(void(detail::INVOKE(std::declval(), std::declval()...))),
F, Args...>
{
using type = decltype(detail::INVOKE(std::declval(), std::declval()...));
};
} // namespace detail
template struct result_of;
template<class F, class... ArgTypes>
struct result_of<F(ArgTypes...)> : detail::invoke_result<void, F, ArgTypes...> {};
template<class F, class... ArgTypes>
struct invoke_result : detail::invoke_result<void, F, ArgTypes...> {};
[edit] Notes
As formulated in C++11, the behavior of std::result_of
is undefined when INVOKE(std::declval<F>(), std::declval<ArgTypes>()...)
is ill-formed (e.g. when F is not a callable type at all). C++14 changes that to a SFINAE (when F is not callable, std::result_of<F(ArgTypes...)>
simply doesn't have the type
member).
The motivation behind std::result_of
is to determine the result of invoking a Callable, in particular if that result type is different for different sets of arguments.
F(Args...) is a function type with Args...
being the argument types and F
being the return type. As such, std::result_of
suffers from several quirks that led to its deprecation in favor of std::invoke_result
in C++17:
F
cannot be a function type or an array type (but can be a reference to them);- if any of the
Args
has type "array ofT
" or a function typeT
, it is automatically adjusted toT*
; - neither
F
nor any ofArgs...
can be an abstract class type; - if any of
Args...
has a top-level cv-qualifier, it is discarded; - none of
Args...
may be of type void.
To avoid these quirks, result_of
is often used with reference types as F
and Args...
. For example:
template<class F, class... Args> std::result_of_t<F&&(Args&&...)> // instead of std::result_of_t<F(Args...)>, which is wrong my_invoke(F&& f, Args&&... args) { /* implementation */ }
[edit] Notes
Feature-test macro | Value | Std | Feature |
---|---|---|---|
__cpp_lib_result_of_sfinae | 201210L | (C++14) | std::result_of and SFINAE |
__cpp_lib_is_invocable | 201703L | (C++17) | std::is_invocable, std::invoke_result |
[edit] Examples
#include #include struct S { double operator()(char, int&); float operator()(int) { return 1.0; } }; template typename std::result_of<T(int)>::type f(T& t) { std::cout << "overload of f for callable T\n"; return t(0); } template<class T, class U> int f(U u) { std::cout << "overload of f for non-callable T\n"; return u; } int main() { // the result of invoking S with char and int& arguments is double std::result_of<S(char, int&)>::type d = 3.14; // d has type double static_assert(std::is_same<decltype(d), double>::value, ""); // std::invoke_result uses different syntax (no parentheses) std::invoke_result<S,char,int&>::type b = 3.14; static_assert(std::is_same<decltype(b), double>::value, ""); // the result of invoking S with int argument is float std::result_of<S(int)>::type x = 3.14; // x has type float static_assert(std::is_same<decltype(x), float>::value, ""); // result_of can be used with a pointer to member function as follows struct C { double Func(char, int&); }; std::result_of<decltype(&C::Func)(C, char, int&)>::type g = 3.14; static_assert(std::is_same<decltype(g), double>::value, ""); f(1); // may fail to compile in C++11; calls the non-callable overload in C++14 }
Output:
overload of f for non-callable T