std::tuple - cppreference.com (original) (raw)

| | | | | ---------------------------------------- | | ------------- | | template< class... Types > class tuple; | | (since C++11) |

Class template std::tuple is a fixed-size collection of heterogeneous values. It is a generalization of std::pair.

If std::is_trivially_destructible<Ti>::value is true for every Ti in Types, the destructor of std::tuple is trivial.

If a program declares an explicit or partial specialization of std::tuple, the program is ill-formed, no diagnostic required.

Contents

[edit] Template parameters

Types... - the types of the elements that the tuple stores. Empty list is supported.

[edit] Member functions

| | constructs a new tuple (public member function) [edit] | | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | | assigns the contents of one tuple to another (public member function) [edit] | | | swaps the contents of two tuples (public member function) [edit] |

[edit] Non-member functions

make_tuple(C++11) creates a tuple object of the type defined by the argument types (function template) [edit]
tie(C++11) creates a tuple of lvalue references or unpacks a tuple into individual objects (function template) [edit]
forward_as_tuple(C++11) creates a tuple of forwarding references (function template) [edit]
tuple_cat(C++11) creates a tuple by concatenating any number of tuples (function template) [edit]
get(std::tuple)(C++11) tuple accesses specified element (function template) [edit]
operator==operator!=operator<operator<=operator>operator>=operator<=>(removed in C++20)(removed in C++20)(removed in C++20)(removed in C++20)(removed in C++20)(C++20) lexicographically compares the values in the tuple (function template) [edit]
std::swap(std::tuple)(C++11) specializes the std::swap algorithm (function template) [edit]

[edit] Helper concepts

[edit] Helper classes

std::tuple_sizestd::tuple(C++11) obtains the size ofa tuple (class template specialization) [edit]
std::tuple_elementstd::tuple(C++11) obtains the type of the specified element (class template specialization) [edit]
std::uses_allocatorstd::tuple(C++11) specializes the std::uses_allocator type trait (class template specialization) [edit]
std::basic_common_reference<_tuple-like_>(C++23) determines the common reference type of a tuple and a tuple-like type (class template specialization) [edit]
std::common_type<_tuple-like_>(C++23) determines the common type of a tuple and a tuple-like type (class template specialization) [edit]
std::formatterstd::tuple(C++23) formatting support for tuple (class template specialization) [edit]
ignore(C++11) placeholder to skip an element when unpacking a tuple using tie (constant) [edit]

[edit] Helper specializations

| template< class... Ts > constexpr bool enable_nonlocking_formatter_optimization<std::tuple<Ts...>> = (enable_nonlocking_formatter_optimization<Ts> && ...); | | (since C++23) | | --------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | ------------- |

This specialization of std::enable_nonlocking_formatter_optimization enables efficient implementation of std::print and std::println for printing a tuple object when each element type enables it.

[edit] Deduction guides (since C++17)

[edit] Notes

Since the "shape" of a tuple – its size, the types of its elements, and the ordering of those types – are part of its type signature, they must all be available at compile time and can only depend on other compile-time information. This means that many conditional operations on tuples – in particular, conditional prepend/append and filter – are only possible if the conditions can be evaluated at compile time. For example, given a std::tuple<int, double, int>, it is possible to filter on types – e.g. returning a std::tuple<int, int> – but not to filter on whether or not each element is positive (which would have a different type signature depending on runtime values of the tuple), unless all the elements were themselves constexpr.

As a workaround, one can work with tuples of std::optional, but there is still no way to adjust the size based on runtime information.

Until N4387 (applied as a defect report for C++11), a function could not return a tuple using copy-list-initialization:

std::tuple<int, int> foo_tuple() { return {1, -1}; // Error until N4387 return std::tuple<int, int>{1, -1}; // Always works return std::make_tuple(1, -1); // Always works }

[edit] Example

#include #include #include #include   std::tuple<double, char, std::string> get_student(int id) { switch (id) { case 0: return {3.8, 'A', "Lisa Simpson"}; case 1: return {2.9, 'C', "Milhouse Van Houten"}; case 2: return {1.7, 'D', "Ralph Wiggum"}; case 3: return {0.6, 'F', "Bart Simpson"}; }   throw std::invalid_argument("id"); }   int main() { const auto student0 = get_student(0); std::cout << "ID: 0, " << "GPA: " << std::get<0>(student0) << ", " << "grade: " << std::get<1>(student0) << ", " << "name: " << std::get<2>(student0) << '\n';   const auto student1 = get_student(1); std::cout << "ID: 1, " << "GPA: " << std::get(student1) << ", " << "grade: " << std::get(student1) << ", " << "name: " << std::get<std::string>(student1) << '\n';   double gpa2; char grade2; std::string name2; std::tie(gpa2, grade2, name2) = get_student(2); std::cout << "ID: 2, " << "GPA: " << gpa2 << ", " << "grade: " << grade2 << ", " << "name: " << name2 << '\n';   // C++17 structured binding: const auto [gpa3, grade3, name3] = get_student(3); std::cout << "ID: 3, " << "GPA: " << gpa3 << ", " << "grade: " << grade3 << ", " << "name: " << name3 << '\n'; }

Output:

ID: 0, GPA: 3.8, grade: A, name: Lisa Simpson ID: 1, GPA: 2.9, grade: C, name: Milhouse Van Houten ID: 2, GPA: 1.7, grade: D, name: Ralph Wiggum ID: 3, GPA: 0.6, grade: F, name: Bart Simpson

[edit] Defect reports

The following behavior-changing defect reports were applied retroactively to previously published C++ standards.

DR Applied to Behavior as published Correct behavior
LWG 2796 C++11 triviality of the destructor of std::tuple was unspecified specified
LWG 3990 C++11 a program could declare an explicit orpartial specialization of std::tuple the program is ill-formed in thiscase (no diagnostic required)

[edit] References

[edit] See also

| | implements binary tuple, i.e. a pair of values (class template) [edit] | | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |