Additive function (original) (raw)

From Wikipedia, the free encyclopedia

Function that can be written as a sum over prime factors

In number theory, an additive function is an arithmetic function f(n) of the positive integer variable n such that whenever a and b are coprime, the function applied to the product ab is the sum of the values of the function applied to a and b:[1] f ( a b ) = f ( a ) + f ( b ) . {\displaystyle f(ab)=f(a)+f(b).} {\displaystyle f(ab)=f(a)+f(b).}

Completely additive

[edit]

An additive function f(n) is said to be completely additive if f ( a b ) = f ( a ) + f ( b ) {\displaystyle f(ab)=f(a)+f(b)} {\displaystyle f(ab)=f(a)+f(b)} holds for all positive integers a and b, even when they are not coprime. Totally additive is also used in this sense by analogy with totally multiplicative functions. If f is a completely additive function then f(1) = 0.

Every completely additive function is additive, but not vice versa.

Examples of arithmetic functions which are completely additive are:

_a_0(4) = 2 + 2 = 4

_a_0(20) = _a_0(22 · 5) = 2 + 2 + 5 = 9

_a_0(27) = 3 + 3 + 3 = 9

_a_0(144) = _a_0(24 · 32) = _a_0(24) + _a_0(32) = 8 + 6 = 14

_a_0(2000) = _a_0(24 · 53) = _a_0(24) + _a_0(53) = 8 + 15 = 23

_a_0(2003) = 2003

_a_0(54,032,858,972,279) = 1240658

_a_0(54,032,858,972,302) = 1780417

_a_0(20,802,650,704,327,415) = 1240681

Ω(1) = 0, since 1 has no prime factors

Ω(4) = 2

Ω(16) = Ω(2·2·2·2) = 4

Ω(20) = Ω(2·2·5) = 3

Ω(27) = Ω(3·3·3) = 3

Ω(144) = Ω(24 · 32) = Ω(24) + Ω(32) = 4 + 2 = 6

Ω(2000) = Ω(24 · 53) = Ω(24) + Ω(53) = 4 + 3 = 7

Ω(2001) = 3

Ω(2002) = 4

Ω(2003) = 1

Ω(54,032,858,972,279) = Ω(11 ⋅ 19932 ⋅ 1236661) = 4

Ω(54,032,858,972,302) = Ω(2 ⋅ 72 ⋅ 149 ⋅ 2081 ⋅ 1778171) = 6

Ω(20,802,650,704,327,415) = Ω(5 ⋅ 7 ⋅ 112 ⋅ 19932 ⋅ 1236661) = 7.

Examples of arithmetic functions which are additive but not completely additive are:

ω(4) = 1

ω(16) = ω(24) = 1

ω(20) = ω(22 · 5) = 2

ω(27) = ω(33) = 1

ω(144) = ω(24 · 32) = ω(24) + ω(32) = 1 + 1 = 2

ω(2000) = ω(24 · 53) = ω(24) + ω(53) = 1 + 1 = 2

ω(2001) = 3

ω(2002) = 4

ω(2003) = 1

ω(54,032,858,972,279) = 3

ω(54,032,858,972,302) = 5

ω(20,802,650,704,327,415) = 5

_a_1(1) = 0

_a_1(4) = 2

_a_1(20) = 2 + 5 = 7

_a_1(27) = 3

_a_1(144) = _a_1(24 · 32) = _a_1(24) + _a_1(32) = 2 + 3 = 5

_a_1(2000) = _a_1(24 · 53) = _a_1(24) + _a_1(53) = 2 + 5 = 7

_a_1(2001) = 55

_a_1(2002) = 33

_a_1(2003) = 2003

_a_1(54,032,858,972,279) = 1238665

_a_1(54,032,858,972,302) = 1780410

_a_1(20,802,650,704,327,415) = 1238677

Multiplicative functions

[edit]

From any additive function f ( n ) {\displaystyle f(n)} {\displaystyle f(n)} it is possible to create a related multiplicative function g ( n ) , {\displaystyle g(n),} {\displaystyle g(n),} which is a function with the property that whenever a {\displaystyle a} {\displaystyle a} and b {\displaystyle b} {\displaystyle b} are coprime then: g ( a b ) = g ( a ) × g ( b ) . {\displaystyle g(ab)=g(a)\times g(b).} {\displaystyle g(ab)=g(a)\times g(b).}One such example is g ( n ) = 2 f ( n ) . {\displaystyle g(n)=2^{f(n)}.} {\displaystyle g(n)=2^{f(n)}.} Likewise if f ( n ) {\displaystyle f(n)} {\displaystyle f(n)} is completely additive, then g ( n ) = 2 f ( n ) {\displaystyle g(n)=2^{f(n)}} {\displaystyle g(n)=2^{f(n)}} is completely multiplicative. More generally, we could consider the function g ( n ) = c f ( n ) {\displaystyle g(n)=c^{f(n)}} {\displaystyle g(n)=c^{f(n)}}, where c {\displaystyle c} {\displaystyle c} is a nonzero real constant.

Summatory functions

[edit]

Given an additive function f {\displaystyle f} {\displaystyle f}, let its summatory function be defined by M f ( x ) := ∑ n ≤ x f ( n ) {\textstyle {\mathcal {M}}_{f}(x):=\sum _{n\leq x}f(n)} {\textstyle {\mathcal {M}}_{f}(x):=\sum _{n\leq x}f(n)}. The average of f {\displaystyle f} {\displaystyle f} is given exactly as M f ( x ) = ∑ p α ≤ x f ( p α ) ( ⌊ x p α ⌋ − ⌊ x p α + 1 ⌋ ) . {\displaystyle {\mathcal {M}}_{f}(x)=\sum _{p^{\alpha }\leq x}f(p^{\alpha })\left(\left\lfloor {\frac {x}{p^{\alpha }}}\right\rfloor -\left\lfloor {\frac {x}{p^{\alpha +1}}}\right\rfloor \right).} {\displaystyle {\mathcal {M}}_{f}(x)=\sum _{p^{\alpha }\leq x}f(p^{\alpha })\left(\left\lfloor {\frac {x}{p^{\alpha }}}\right\rfloor -\left\lfloor {\frac {x}{p^{\alpha +1}}}\right\rfloor \right).}

The summatory functions over f {\displaystyle f} {\displaystyle f} can be expanded as M f ( x ) = x E ( x ) + O ( x ⋅ D ( x ) ) {\displaystyle {\mathcal {M}}_{f}(x)=xE(x)+O({\sqrt {x}}\cdot D(x))} {\displaystyle {\mathcal {M}}_{f}(x)=xE(x)+O({\sqrt {x}}\cdot D(x))} where E ( x ) = ∑ p α ≤ x f ( p α ) p − α ( 1 − p − 1 ) D 2 ( x ) = ∑ p α ≤ x | f ( p α ) | 2 p − α . {\displaystyle {\begin{aligned}E(x)&=\sum _{p^{\alpha }\leq x}f(p^{\alpha })p^{-\alpha }(1-p^{-1})\\D^{2}(x)&=\sum _{p^{\alpha }\leq x}|f(p^{\alpha })|^{2}p^{-\alpha }.\end{aligned}}} {\displaystyle {\begin{aligned}E(x)&=\sum _{p^{\alpha }\leq x}f(p^{\alpha })p^{-\alpha }(1-p^{-1})\\D^{2}(x)&=\sum _{p^{\alpha }\leq x}|f(p^{\alpha })|^{2}p^{-\alpha }.\end{aligned}}}

The average of the function f 2 {\displaystyle f^{2}} {\displaystyle f^{2}} is also expressed by these functions as M f 2 ( x ) = x E 2 ( x ) + O ( x D 2 ( x ) ) . {\displaystyle {\mathcal {M}}_{f^{2}}(x)=xE^{2}(x)+O(xD^{2}(x)).} {\displaystyle {\mathcal {M}}_{f^{2}}(x)=xE^{2}(x)+O(xD^{2}(x)).}

There is always an absolute constant C f > 0 {\displaystyle C_{f}>0} {\displaystyle C_{f}>0} such that for all natural numbers x ≥ 1 {\displaystyle x\geq 1} {\displaystyle x\geq 1}, ∑ n ≤ x | f ( n ) − E ( x ) | 2 ≤ C f ⋅ x D 2 ( x ) . {\displaystyle \sum _{n\leq x}|f(n)-E(x)|^{2}\leq C_{f}\cdot xD^{2}(x).} {\displaystyle \sum _{n\leq x}|f(n)-E(x)|^{2}\leq C_{f}\cdot xD^{2}(x).}

Let ν ( x ; z ) := 1 x # { n ≤ x : f ( n ) − A ( x ) B ( x ) ≤ z } . {\displaystyle \nu (x;z):={\frac {1}{x}}\#\!\left\{n\leq x:{\frac {f(n)-A(x)}{B(x)}}\leq z\right\}\!.} {\displaystyle \nu (x;z):={\frac {1}{x}}\#\!\left\{n\leq x:{\frac {f(n)-A(x)}{B(x)}}\leq z\right\}\!.}

Suppose that f {\displaystyle f} {\displaystyle f} is an additive function with − 1 ≤ f ( p α ) = f ( p ) ≤ 1 {\displaystyle -1\leq f(p^{\alpha })=f(p)\leq 1} {\displaystyle -1\leq f(p^{\alpha })=f(p)\leq 1}such that as x → ∞ {\displaystyle x\rightarrow \infty } {\displaystyle x\rightarrow \infty }, B ( x ) = ∑ p ≤ x f 2 ( p ) / p → ∞ . {\displaystyle B(x)=\sum _{p\leq x}f^{2}(p)/p\rightarrow \infty .} {\displaystyle B(x)=\sum _{p\leq x}f^{2}(p)/p\rightarrow \infty .}

Then ν ( x ; z ) ∼ G ( z ) {\displaystyle \nu (x;z)\sim G(z)} {\displaystyle \nu (x;z)\sim G(z)} where G ( z ) {\displaystyle G(z)} {\displaystyle G(z)} is the Gaussian distribution function G ( z ) = 1 2 π ∫ − ∞ z e − t 2 / 2 d t . {\displaystyle G(z)={\frac {1}{\sqrt {2\pi }}}\int _{-\infty }^{z}e^{-t^{2}/2}dt.} {\displaystyle G(z)={\frac {1}{\sqrt {2\pi }}}\int _{-\infty }^{z}e^{-t^{2}/2}dt.}

Examples of this result related to the prime omega function and the numbers of prime divisors of shifted primes include the following for fixed z ∈ R {\displaystyle z\in \mathbb {R} } {\displaystyle z\in \mathbb {R} } where the relations hold for x ≫ 1 {\displaystyle x\gg 1} {\displaystyle x\gg 1}: # { n ≤ x : ω ( n ) − log ⁡ log ⁡ x ≤ z ( log ⁡ log ⁡ x ) 1 / 2 } ∼ x G ( z ) , {\displaystyle \#\{n\leq x:\omega (n)-\log \log x\leq z(\log \log x)^{1/2}\}\sim xG(z),} {\displaystyle \#\{n\leq x:\omega (n)-\log \log x\leq z(\log \log x)^{1/2}\}\sim xG(z),} # { p ≤ x : ω ( p + 1 ) − log ⁡ log ⁡ x ≤ z ( log ⁡ log ⁡ x ) 1 / 2 } ∼ π ( x ) G ( z ) . {\displaystyle \#\{p\leq x:\omega (p+1)-\log \log x\leq z(\log \log x)^{1/2}\}\sim \pi (x)G(z).} {\displaystyle \#\{p\leq x:\omega (p+1)-\log \log x\leq z(\log \log x)^{1/2}\}\sim \pi (x)G(z).}

  1. ^ Erdös, P., and M. Kac. On the Gaussian Law of Errors in the Theory of Additive Functions. Proc Natl Acad Sci USA. 1939 April; 25(4): 206–207. online