Chapman function (original) (raw)

From Wikipedia, the free encyclopedia

Graph of ch(x, z)

A Chapman function or Chapman layer, denoted ch, describes the integration of an atmospheric parameter along a slant path on a spherical Earth, relative to the vertical or zenithal case. It applies to any physical quantity with a concentration decreasing exponentially with increasing altitude. At small angles, the Chapman function is approximately equal to the secant function of the zenith angle, sec ⁡ ( z ) {\displaystyle \sec(z)} {\displaystyle \sec(z)}.

The Chapman function is named after Sydney Chapman, who introduced the function in 1931.[1]It has been applied for absorption (esp. optical absorption) and the ionosphere.[2]

In an isothermal model of the atmosphere, the density ϱ ( h ) {\textstyle \varrho (h)} {\textstyle \varrho (h)} varies exponentially with altitude h {\textstyle h} {\textstyle h} according to the Barometric formula:

ϱ ( h ) = ϱ 0 exp ⁡ ( − h H ) {\displaystyle \varrho (h)=\varrho _{0}\exp \left(-{\frac {h}{H}}\right)} {\displaystyle \varrho (h)=\varrho _{0}\exp \left(-{\frac {h}{H}}\right)},

where ϱ 0 {\textstyle \varrho _{0}} {\textstyle \varrho _{0}} denotes the density at sea level ( h = 0 {\textstyle h=0} {\textstyle h=0}) and H {\textstyle H} {\textstyle H} the so-called scale height. The total amount of matter traversed by a vertical ray starting at altitude h {\textstyle h} {\textstyle h} towards infinity is given by the integrated density ("column depth")

X 0 ( h ) = ∫ h ∞ ϱ ( l ) d l = ϱ 0 H exp ⁡ ( − h H ) {\displaystyle X_{0}(h)=\int _{h}^{\infty }\varrho (l)\,\mathrm {d} l=\varrho _{0}H\exp \left(-{\frac {h}{H}}\right)} {\displaystyle X_{0}(h)=\int _{h}^{\infty }\varrho (l)\,\mathrm {d} l=\varrho _{0}H\exp \left(-{\frac {h}{H}}\right)}.

For inclined rays having a zenith angle z {\textstyle z} {\textstyle z}, the integration is not straight-forward due to the non-linear relationship between altitude and path length when considering the curvature of Earth. Here, the integral reads

X z ( h ) = ϱ 0 exp ⁡ ( − h H ) ∫ 0 ∞ exp ⁡ ( − 1 H ( s 2 + l 2 + 2 l s cos ⁡ z − s ) ) d l {\displaystyle X_{z}(h)=\varrho _{0}\exp \left(-{\frac {h}{H}}\right)\int _{0}^{\infty }\exp \left(-{\frac {1}{H}}\left({\sqrt {s^{2}+l^{2}+2ls\cos z}}-s\right)\right)\,\mathrm {d} l} {\displaystyle X_{z}(h)=\varrho _{0}\exp \left(-{\frac {h}{H}}\right)\int _{0}^{\infty }\exp \left(-{\frac {1}{H}}\left({\sqrt {s^{2}+l^{2}+2ls\cos z}}-s\right)\right)\,\mathrm {d} l},

where we defined s = h + R E {\textstyle s=h+R_{\mathrm {E} }} {\textstyle s=h+R_{\mathrm {E} }} ( R E {\textstyle R_{\mathrm {E} }} {\textstyle R_{\mathrm {E} }} denotes the Earth radius).

The Chapman function ch ⁡ ( x , z ) {\textstyle \operatorname {ch} (x,z)} {\textstyle \operatorname {ch} (x,z)} is defined as the ratio between slant depth X z {\textstyle X_{z}} {\textstyle X_{z}} and vertical column depth X 0 {\textstyle X_{0}} {\textstyle X_{0}}. Defining x = s / H {\textstyle x=s/H} {\textstyle x=s/H}, it can be written as

ch ⁡ ( x , z ) = X z X 0 = e x ∫ 0 ∞ exp ⁡ ( − x 2 + u 2 + 2 x u cos ⁡ z ) d u {\displaystyle \operatorname {ch} (x,z)={\frac {X_{z}}{X_{0}}}=\mathrm {e} ^{x}\int _{0}^{\infty }\exp \left(-{\sqrt {x^{2}+u^{2}+2xu\cos z}}\right)\,\mathrm {d} u} {\displaystyle \operatorname {ch} (x,z)={\frac {X_{z}}{X_{0}}}=\mathrm {e} ^{x}\int _{0}^{\infty }\exp \left(-{\sqrt {x^{2}+u^{2}+2xu\cos z}}\right)\,\mathrm {d} u}.

A number of different integral representations have been developed in the literature. Chapman's original representation reads[1]

ch ⁡ ( x , z ) = x sin ⁡ z ∫ 0 z exp ⁡ ( x ( 1 − sin ⁡ z / sin ⁡ λ ) ) sin 2 ⁡ λ d λ {\displaystyle \operatorname {ch} (x,z)=x\sin z\int _{0}^{z}{\frac {\exp \left(x(1-\sin z/\sin \lambda )\right)}{\sin ^{2}\lambda }}\,\mathrm {d} \lambda } {\displaystyle \operatorname {ch} (x,z)=x\sin z\int _{0}^{z}{\frac {\exp \left(x(1-\sin z/\sin \lambda )\right)}{\sin ^{2}\lambda }}\,\mathrm {d} \lambda }.

Huestis[3] developed the representation

ch ⁡ ( x , z ) = 1 + x sin ⁡ z ∫ 0 z exp ⁡ ( x ( 1 − sin ⁡ z / sin ⁡ λ ) ) 1 + cos ⁡ λ d λ {\displaystyle \operatorname {ch} (x,z)=1+x\sin z\int _{0}^{z}{\frac {\exp \left(x(1-\sin z/\sin \lambda )\right)}{1+\cos \lambda }}\,\mathrm {d} \lambda } {\displaystyle \operatorname {ch} (x,z)=1+x\sin z\int _{0}^{z}{\frac {\exp \left(x(1-\sin z/\sin \lambda )\right)}{1+\cos \lambda }}\,\mathrm {d} \lambda },

which does not suffer from numerical singularities present in Chapman's representation.

For z = π / 2 {\textstyle z=\pi /2} {\textstyle z=\pi /2} (horizontal incidence), the Chapman function reduces to[4]

ch ⁡ ( x , π 2 ) = x e x K 1 ( x ) {\displaystyle \operatorname {ch} \left(x,{\frac {\pi }{2}}\right)=x\mathrm {e} ^{x}K_{1}(x)} {\displaystyle \operatorname {ch} \left(x,{\frac {\pi }{2}}\right)=x\mathrm {e} ^{x}K_{1}(x)}.

Here, K 1 ( x ) {\textstyle K_{1}(x)} {\textstyle K_{1}(x)} refers to the modified Bessel function of the second kind of the first order. For large values of x {\textstyle x} {\textstyle x}, this can further be approximated by

ch ⁡ ( x ≫ 1 , π 2 ) ≈ π 2 x {\displaystyle \operatorname {ch} \left(x\gg 1,{\frac {\pi }{2}}\right)\approx {\sqrt {{\frac {\pi }{2}}x}}} {\displaystyle \operatorname {ch} \left(x\gg 1,{\frac {\pi }{2}}\right)\approx {\sqrt {{\frac {\pi }{2}}x}}}.

For x → ∞ {\textstyle x\rightarrow \infty } {\textstyle x\rightarrow \infty } and 0 ≤ z < π / 2 {\textstyle 0\leq z<\pi /2} {\textstyle 0\leq z<\pi /2}, the Chapman function converges to the secant function:

lim x → ∞ ch ⁡ ( x , z ) = sec ⁡ z {\displaystyle \lim _{x\rightarrow \infty }\operatorname {ch} (x,z)=\sec z} {\displaystyle \lim _{x\rightarrow \infty }\operatorname {ch} (x,z)=\sec z}.

In practical applications related to the terrestrial atmosphere, where x ∼ 1000 {\textstyle x\sim 1000} {\textstyle x\sim 1000}, ch ⁡ ( x , z ) ≈ sec ⁡ z {\textstyle \operatorname {ch} (x,z)\approx \sec z} {\textstyle \operatorname {ch} (x,z)\approx \sec z} is a good approximation for zenith angles up to 60° to 70°, depending on the accuracy required.

  1. ^ a b Chapman, S. (1 September 1931). "The absorption and dissociative or ionizing effect of monochromatic radiation in an atmosphere on a rotating earth part II. Grazing incidence". Proceedings of the Physical Society. 43 (5): 483–501. Bibcode:1931PPS....43..483C. doi:10.1088/0959-5309/43/5/302.
  2. ^ Simple Comparative Ionospheres Using the Chapman Layer Model https://heliophysics.ucar.edu/sites/default/files/heliophysics/resources/presentations/2014_Lab_4.pdf
  3. ^ Huestis, David L. (2001). "Accurate evaluation of the Chapman function for atmospheric attenuation". Journal of Quantitative Spectroscopy and Radiative Transfer. 69 (6): 709–721. Bibcode:2001JQSRT..69..709H. doi:10.1016/S0022-4073(00)00107-2.
  4. ^ Vasylyev, Dmytro (December 2021). "Accurate analytic approximation for the Chapman grazing incidence function". Earth, Planets and Space. 73 (1): 112. Bibcode:2021EP&S...73..112V. doi:10.1186/s40623-021-01435-y. S2CID 234796240.