Completely positive map (original) (raw)
From Wikipedia, the free encyclopedia
C*-algebra mapping preserving positive elements
In mathematics a positive map is a map between C*-algebras that sends positive elements to positive elements. A completely positive map is one that satisfies a stronger, more robust condition.
Let A {\displaystyle A} and B {\displaystyle B}
be C*-algebras. A linear map ϕ : A → B {\displaystyle \phi :A\to B}
is called a positive map if ϕ {\displaystyle \phi }
maps positive elements to positive elements: a ≥ 0 ⟹ ϕ ( a ) ≥ 0 {\displaystyle a\geq 0\implies \phi (a)\geq 0}
.
Any linear map ϕ : A → B {\displaystyle \phi :A\to B} induces another map
id ⊗ ϕ : C k × k ⊗ A → C k × k ⊗ B {\displaystyle {\textrm {id}}\otimes \phi :\mathbb {C} ^{k\times k}\otimes A\to \mathbb {C} ^{k\times k}\otimes B}
in a natural way. If C k × k ⊗ A {\displaystyle \mathbb {C} ^{k\times k}\otimes A} is identified with the C*-algebra A k × k {\displaystyle A^{k\times k}}
of k × k {\displaystyle k\times k}
-matrices with entries in A {\displaystyle A}
, then id ⊗ ϕ {\displaystyle {\textrm {id}}\otimes \phi }
acts as
( a 11 ⋯ a 1 k ⋮ ⋱ ⋮ a k 1 ⋯ a k k ) ↦ ( ϕ ( a 11 ) ⋯ ϕ ( a 1 k ) ⋮ ⋱ ⋮ ϕ ( a k 1 ) ⋯ ϕ ( a k k ) ) . {\displaystyle {\begin{pmatrix}a_{11}&\cdots &a_{1k}\\\vdots &\ddots &\vdots \\a_{k1}&\cdots &a_{kk}\end{pmatrix}}\mapsto {\begin{pmatrix}\phi (a_{11})&\cdots &\phi (a_{1k})\\\vdots &\ddots &\vdots \\\phi (a_{k1})&\cdots &\phi (a_{kk})\end{pmatrix}}.}
We then say ϕ {\displaystyle \phi } is k-positive if id C k × k ⊗ ϕ {\displaystyle {\textrm {id}}_{\mathbb {C} ^{k\times k}}\otimes \phi }
is a positive map and completely positive if ϕ {\displaystyle \phi }
is k-positive for all k.
- Every *-homomorphism is completely positive.[1]
- For every linear operator V : H 1 → H 2 {\displaystyle V:H_{1}\to H_{2}}
between Hilbert spaces, the map L ( H 1 ) → L ( H 2 ) , A ↦ V A V ∗ {\displaystyle L(H_{1})\to L(H_{2}),\ A\mapsto VAV^{\ast }}
is completely positive.[2] Stinespring's theorem says that all completely positive maps are compositions of *-homomorphisms and these special maps.
- Every positive functional ϕ : A → C {\displaystyle \phi :A\to \mathbb {C} }
(in particular every state) is automatically completely positive.
- Given the algebras C ( X ) {\displaystyle C(X)}
and C ( Y ) {\displaystyle C(Y)}
of complex-valued continuous functions on compact Hausdorff spaces X , Y {\displaystyle X,Y}
, every positive map C ( X ) → C ( Y ) {\displaystyle C(X)\to C(Y)}
is completely positive.
- The transposition of matrices is a standard example of a positive map that fails to be 2-positive. Let T denote this map on C n × n {\displaystyle \mathbb {C} ^{n\times n}}
. The following is a positive matrix in C 2 × 2 ⊗ C 2 × 2 {\displaystyle \mathbb {C} ^{2\times 2}\otimes \mathbb {C} ^{2\times 2}}
: [ ( 1 0 0 0 ) ( 0 1 0 0 ) ( 0 0 1 0 ) ( 0 0 0 1 ) ] = [ 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 ] . {\displaystyle {\begin{bmatrix}{\begin{pmatrix}1&0\\0&0\end{pmatrix}}&{\begin{pmatrix}0&1\\0&0\end{pmatrix}}\\{\begin{pmatrix}0&0\\1&0\end{pmatrix}}&{\begin{pmatrix}0&0\\0&1\end{pmatrix}}\end{bmatrix}}={\begin{bmatrix}1&0&0&1\\0&0&0&0\\0&0&0&0\\1&0&0&1\\\end{bmatrix}}.}
The image of this matrix under I 2 ⊗ T {\displaystyle I_{2}\otimes T}
is [ ( 1 0 0 0 ) T ( 0 1 0 0 ) T ( 0 0 1 0 ) T ( 0 0 0 1 ) T ] = [ 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 ] , {\displaystyle {\begin{bmatrix}{\begin{pmatrix}1&0\\0&0\end{pmatrix}}^{T}&{\begin{pmatrix}0&1\\0&0\end{pmatrix}}^{T}\\{\begin{pmatrix}0&0\\1&0\end{pmatrix}}^{T}&{\begin{pmatrix}0&0\\0&1\end{pmatrix}}^{T}\end{bmatrix}}={\begin{bmatrix}1&0&0&0\\0&0&1&0\\0&1&0&0\\0&0&0&1\\\end{bmatrix}},}
which is clearly not positive, having determinant −1. Moreover, the eigenvalues of this matrix are 1,1,1 and −1. (This matrix happens to be the Choi matrix of T, in fact.) Incidentally, a map Φ is said to be co-positive if the composition Φ ∘ {\displaystyle \circ }
T is positive. The transposition map itself is a co-positive map.
- Choi's theorem on completely positive maps
- ^ K. R. Davidson: C*-Algebras by Example, American Mathematical Society (1996), ISBN 0-821-80599-1, Thm. IX.4.1
- ^ R.V. Kadison, J. R. Ringrose: Fundamentals of the Theory of Operator Algebras II, Academic Press (1983), ISBN 0-1239-3302-1, Sect. 11.5.21