Convex body (original) (raw)
From Wikipedia, the free encyclopedia
Non-empty convex set in Euclidean space
A dodecahedron is a convex body.
In mathematics, a convex body in n {\displaystyle n} -dimensional Euclidean space R n {\displaystyle \mathbb {R} ^{n}}
is a compact convex set with non-empty interior. Some authors do not require a non-empty interior, merely that the set is non-empty.
A convex body K {\displaystyle K} is called symmetric if it is centrally symmetric with respect to the origin; that is to say, a point x {\displaystyle x}
lies in K {\displaystyle K}
if and only if its antipode, − x {\displaystyle -x}
also lies in K . {\displaystyle K.}
Symmetric convex bodies are in a one-to-one correspondence with the unit balls of norms on R n . {\displaystyle \mathbb {R} ^{n}.}
Some commonly known examples of convex bodies are the Euclidean ball, the hypercube and the cross-polytope.
Metric space structure
[edit]
Write K n {\displaystyle {\mathcal {K}}^{n}} for the set of convex bodies in R n {\displaystyle \mathbb {R} ^{n}}
. Then K n {\displaystyle {\mathcal {K}}^{n}}
is a complete metric space with metric
d ( K , L ) := inf { ϵ ≥ 0 : K ⊂ L + B n ( ϵ ) , L ⊂ K + B n ( ϵ ) } {\displaystyle d(K,L):=\inf\{\epsilon \geq 0:K\subset L+B^{n}(\epsilon ),L\subset K+B^{n}(\epsilon )\}} .[1]
Further, the Blaschke Selection Theorem says that every _d_-bounded sequence in K n {\displaystyle {\mathcal {K}}^{n}} has a convergent subsequence.[1]
If K {\displaystyle K} is a bounded convex body containing the origin O {\displaystyle O}
in its interior, the polar body K ∗ {\displaystyle K^{*}}
is { u : ⟨ u , v ⟩ ≤ 1 , ∀ v ∈ K } {\displaystyle \{u:\langle u,v\rangle \leq 1,\forall v\in K\}}
. The polar body has several nice properties including ( K ∗ ) ∗ = K {\displaystyle (K^{*})^{*}=K}
, K ∗ {\displaystyle K^{*}}
is bounded, and if K 1 ⊂ K 2 {\displaystyle K_{1}\subset K_{2}}
then K 2 ∗ ⊂ K 1 ∗ {\displaystyle K_{2}^{*}\subset K_{1}^{*}}
. The polar body is a type of duality relation.
- List of convexity topics
- John ellipsoid – Ellipsoid most closely containing, or contained in, an n-dimensional convex object
- Brunn–Minkowski theorem, which has many implications relevant to the geometry of convex bodies.
- ^ a b Hug, Daniel; Weil, Wolfgang (2020). "Lectures on Convex Geometry". Graduate Texts in Mathematics. 286. doi:10.1007/978-3-030-50180-8. ISBN 978-3-030-50179-2. ISSN 0072-5285.
- Hiriart-Urruty, Jean-Baptiste; Lemaréchal, Claude (2001). Fundamentals of Convex Analysis. doi:10.1007/978-3-642-56468-0. ISBN 978-3-540-42205-1.
- Rockafellar, R. Tyrrell (12 January 1997). Convex Analysis. Princeton University Press. ISBN 978-0-691-01586-6.
- Arya, Sunil; Mount, David M. (2023). "Optimal Volume-Sensitive Bounds for Polytope Approximation". 39th International Symposium on Computational Geometry (SoCG 2023). 258. Schloss Dagstuhl – Leibniz-Zentrum für Informatik: 9:1–9:16. doi:10.4230/LIPIcs.SoCG.2023.9.
- Gardner, Richard J. (2002). "The Brunn-Minkowski inequality". Bull. Amer. Math. Soc. (N.S.). 39 (3): 355–405 (electronic). doi:10.1090/S0273-0979-02-00941-2.