Dirichlet function (original) (raw)

From Wikipedia, the free encyclopedia

Indicator function of rational numbers

For the other function sometimes incorrectly called the Dirichlet function, see Dirichlet kernel.

In mathematics, the Dirichlet function[1][2] is the indicator function 1 Q {\displaystyle \mathbf {1} _{\mathbb {Q} }} {\displaystyle \mathbf {1} _{\mathbb {Q} }} of the set of rational numbers Q {\displaystyle \mathbb {Q} } {\displaystyle \mathbb {Q} } over the set of real numbers R {\displaystyle \mathbb {R} } {\displaystyle \mathbb {R} }, i.e. 1 Q ( x ) = 1 {\displaystyle \mathbf {1} _{\mathbb {Q} }(x)=1} {\displaystyle \mathbf {1} _{\mathbb {Q} }(x)=1} for a real number x if x is a rational number and 1 Q ( x ) = 0 {\displaystyle \mathbf {1} _{\mathbb {Q} }(x)=0} {\displaystyle \mathbf {1} _{\mathbb {Q} }(x)=0} if x is not a rational number (i.e. is an irrational number). 1 Q ( x ) = { 1 x ∈ Q 0 x ∉ Q {\displaystyle \mathbf {1} _{\mathbb {Q} }(x)={\begin{cases}1&x\in \mathbb {Q} \\0&x\notin \mathbb {Q} \end{cases}}} {\displaystyle \mathbf {1} _{\mathbb {Q} }(x)={\begin{cases}1&x\in \mathbb {Q} \\0&x\notin \mathbb {Q} \end{cases}}}

It is named after the mathematician Peter Gustav Lejeune Dirichlet.[3] It is an example of a pathological function which provides counterexamples to many situations.

Topological properties

[edit]

For any real number x and any positive rational number T, 1 Q ( x + T ) = 1 Q ( x ) {\displaystyle \mathbf {1} _{\mathbb {Q} }(x+T)=\mathbf {1} _{\mathbb {Q} }(x)} {\displaystyle \mathbf {1} _{\mathbb {Q} }(x+T)=\mathbf {1} _{\mathbb {Q} }(x)}. The Dirichlet function is therefore an example of a real periodic function which is not constant but whose set of periods, the set of rational numbers, is a dense subset of R {\displaystyle \mathbb {R} } {\displaystyle \mathbb {R} }.

Integration properties

[edit]

  1. ^ "Dirichlet-function", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
  2. ^ Dirichlet Function — from MathWorld
  3. ^ Lejeune Dirichlet, Peter Gustav (1829). "Sur la convergence des séries trigonométriques qui servent à représenter une fonction arbitraire entre des limites données". Journal für die reine und angewandte Mathematik. 4: 157–169. The function is defined on page 169
  4. ^ Dunham, William (2005). The Calculus Gallery. Princeton University Press. p. 197. ISBN 0-691-09565-5.