Dodecagonal number (original) (raw)

From Wikipedia, the free encyclopedia

Figurate number representing a dodecagon

In mathematics, a dodecagonal number is a figurate number that represents a dodecagon. The dodecagonal number for n is given by the formula

D n = 5 n 2 − 4 n {\displaystyle D_{n}=5n^{2}-4n} {\displaystyle D_{n}=5n^{2}-4n}

The first few dodecagonal numbers are:

0, 1, 12, 33, 64, 105, 156, 217, 288, 369, 460, 561, 672, 793, 924, 1065, 1216, 1377, 1548, 1729, ... (sequence A051624 in the OEIS)

A formula for the sum of the reciprocals of the dodecagonal numbers is given by ∑ n = 1 ∞ 1 5 n 2 − 4 n = 5 16 ln ⁡ ( 5 ) + 5 8 ln ⁡ ( 1 + 5 2 ) + π 8 1 + 2 5 . {\displaystyle \sum _{n=1}^{\infty }{\frac {1}{5n^{2}-4n}}={\frac {5}{16}}\ln \left(5\right)+{\frac {\sqrt {5}}{8}}\ln \left({\frac {1+{\sqrt {5}}}{2}}\right)+{\frac {\pi }{8}}{\sqrt {1+{\frac {2}{\sqrt {5}}}}}.} {\displaystyle \sum _{n=1}^{\infty }{\frac {1}{5n^{2}-4n}}={\frac {5}{16}}\ln \left(5\right)+{\frac {\sqrt {5}}{8}}\ln \left({\frac {1+{\sqrt {5}}}{2}}\right)+{\frac {\pi }{8}}{\sqrt {1+{\frac {2}{\sqrt {5}}}}}.}