Eulerian number (original) (raw)
Polynomial sequence
In combinatorics, the Eulerian number A ( n , k ) {\textstyle A(n,k)} is the number of permutations of the numbers 1 to n {\textstyle n}
in which exactly k {\textstyle k}
elements are greater than the previous element (permutations with k {\textstyle k}
"ascents").
Leonhard Euler investigated them and associated polynomials in his 1755 book Institutiones calculi differentialis. He first studied them in 1749 (though first printed in 1768).[1]
The polynomials presently known as Eulerian polynomials in Euler's work from 1755, Institutiones calculi differentialis, part 2, p. 485/6. The coefficients of these polynomials are known as Eulerian numbers.
Other notations for A ( n , k ) {\textstyle A(n,k)} are E ( n , k ) {\textstyle E(n,k)}
and ⟨ n k ⟩ {\displaystyle \textstyle \left\langle {n \atop k}\right\rangle }
.
The Eulerian polynomials A n ( t ) {\displaystyle A_{n}(t)} are defined by the exponential generating function
∑ n = 0 ∞ A n ( t ) x n n ! = t − 1 t − e ( t − 1 ) x = ( 1 − e ( t − 1 ) x − 1 t − 1 ) − 1 . {\displaystyle \sum _{n=0}^{\infty }A_{n}(t)\,{\frac {x^{n}}{n!}}={\frac {t-1}{t-e^{(t-1)\,x}}}=\left(1-{\frac {e^{(t-1)x}-1}{t-1}}\right)^{-1}.}
The Eulerian numbers A ( n , k ) {\displaystyle A(n,k)} may also be defined as the coefficients of the Eulerian polynomials:
A n ( t ) = ∑ k = 0 n A ( n , k ) t k . {\displaystyle A_{n}(t)=\sum _{k=0}^{n}A(n,k)\,t^{k}.}
An explicit formula for A ( n , k ) {\textstyle A(n,k)} is[2]
A plot of the Eulerian numbers with the second argument fixed to 5.
A ( n , k ) = ∑ i = 0 k ( − 1 ) i ( n + 1 i ) ( k + 1 − i ) n . {\displaystyle A(n,k)=\sum _{i=0}^{k}(-1)^{i}{\binom {n+1}{i}}(k+1-i)^{n}.}
- For fixed n {\textstyle n}
there is a single permutation which has 0 ascents: ( n , n − 1 , n − 2 , … , 1 ) {\textstyle (n,n-1,n-2,\ldots ,1)}
. Indeed, as ( n 0 ) = 1 {\displaystyle {\tbinom {n}{0}}=1}
for all n {\displaystyle n}
, A ( n , 0 ) = 1 {\textstyle A(n,0)=1}
. This formally includes the empty collection of numbers, n = 0 {\textstyle n=0}
. And so A 0 ( t ) = A 1 ( t ) = 1 {\textstyle A_{0}(t)=A_{1}(t)=1}
.
- For k = 1 {\textstyle k=1}
the explicit formula implies A ( n , 1 ) = 2 n − ( n + 1 ) {\textstyle A(n,1)=2^{n}-(n+1)}
, a sequence in n {\displaystyle n}
that reads 0 , 0 , 1 , 4 , 11 , 26 , 57 , … {\textstyle 0,0,1,4,11,26,57,\dots }
.
- Fully reversing a permutation with k {\textstyle k}
ascents creates another permutation in which there are n − k − 1 {\textstyle n-k-1}
ascents. Therefore A ( n , k ) = A ( n , n − k − 1 ) {\textstyle A(n,k)=A(n,n-k-1)}
. So there is also a single permutation which has n − 1 {\textstyle n-1}
ascents, namely the rising permutation ( 1 , 2 , … , n ) {\textstyle (1,2,\ldots ,n)}
. So also A ( n , n − 1 ) {\textstyle A(n,n-1)}
equals 1 {\displaystyle 1}
.
- Since a permutation of the numbers 1 {\displaystyle 1}
to n {\displaystyle n}
which has k {\displaystyle k}
ascents must have n − 1 − k {\displaystyle n-1-k}
descents, the symmetry A ( n , k ) = A ( n , n − k − 1 ) {\textstyle A(n,k)=A(n,n-k-1)}
shows that A ( n , k ) {\textstyle A(n,k)}
also counts the number of permutations with k {\displaystyle k}
descents.
- For k ≥ n > 0 {\textstyle k\geq n>0}
, the values are formally zero, meaning many sums over k {\textstyle k}
can be written with an upper index only up to n − 1 {\textstyle n-1}
. It also means that the polynomials A n ( t ) {\displaystyle A_{n}(t)}
are really of degree n − 1 {\textstyle n-1}
for n > 0 {\textstyle n>0}
.
A tabulation of the numbers in a triangular array is called the Euler triangle or Euler's triangle. It shares some common characteristics with Pascal's triangle. Values of A ( n , k ) {\textstyle A(n,k)} (sequence A008292 in the OEIS) for 0 ≤ n ≤ 9 {\textstyle 0\leq n\leq 9}
are:
k n | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|---|
0 | 1 | ||||||||
1 | 1 | ||||||||
2 | 1 | 1 | |||||||
3 | 1 | 4 | 1 | ||||||
4 | 1 | 11 | 11 | 1 | |||||
5 | 1 | 26 | 66 | 26 | 1 | ||||
6 | 1 | 57 | 302 | 302 | 57 | 1 | |||
7 | 1 | 120 | 1191 | 2416 | 1191 | 120 | 1 | ||
8 | 1 | 247 | 4293 | 15619 | 15619 | 4293 | 247 | 1 | |
9 | 1 | 502 | 14608 | 88234 | 156190 | 88234 | 14608 | 502 | 1 |
For larger values of n {\textstyle n} , A ( n , k ) {\textstyle A(n,k)}
can also be calculated using the recursive formula[3]
A ( n , k ) = ( n − k ) A ( n − 1 , k − 1 ) + ( k + 1 ) A ( n − 1 , k ) . {\displaystyle A(n,k)=(n-k)\,A(n-1,k-1)+(k+1)\,A(n-1,k).}
This formula can be motivated from the combinatorial definition and thus serves as a natural starting point for the theory.
For small values of n {\textstyle n} and k {\textstyle k}
, the values of A ( n , k ) {\textstyle A(n,k)}
can be calculated by hand. For example
n | k | Permutations | A(n, k) |
---|---|---|---|
1 | 0 | (1) | A(1,0) = 1 |
2 | 0 | (2, 1) | A(2,0) = 1 |
1 | (1, 2) | A(2,1) = 1 | |
3 | 0 | (3, 2, 1) | A(3,0) = 1 |
1 | (1, 3, 2), (2, 1, 3), (2, 3, 1) and (3, 1, 2) | A(3,1) = 4 | |
2 | (1, 2, 3) | A(3,2) = 1 |
Applying the recurrence to one example, we may find
A ( 4 , 1 ) = ( 4 − 1 ) A ( 3 , 0 ) + ( 1 + 1 ) A ( 3 , 1 ) = 3 ⋅ 1 + 2 ⋅ 4 = 11. {\displaystyle A(4,1)=(4-1)\,A(3,0)+(1+1)\,A(3,1)=3\cdot 1+2\cdot 4=11.}
Likewise, the Eulerian polynomials can be computed by the recurrence
A 0 ( t ) = 1 , {\displaystyle A_{0}(t)=1,}
A n ( t ) = A n − 1 ′ ( t ) ⋅ t ( 1 − t ) + A n − 1 ( t ) ⋅ ( 1 + ( n − 1 ) t ) , for n > 1. {\displaystyle A_{n}(t)=A_{n-1}'(t)\cdot t\,(1-t)+A_{n-1}(t)\cdot (1+(n-1)\,t),{\text{ for }}n>1.}
The second formula can be cast into an inductive form,
A n ( t ) = ∑ k = 0 n − 1 ( n k ) A k ( t ) ⋅ ( t − 1 ) n − 1 − k , for n > 1. {\displaystyle A_{n}(t)=\sum _{k=0}^{n-1}{\binom {n}{k}}A_{k}(t)\cdot (t-1)^{n-1-k},{\text{ for }}n>1.}
For any property partitioning a finite set into finitely many smaller sets, the sum of the cardinalities of the smaller sets equals the cardinality of the bigger set. The Eulerian numbers partition the permutations of n {\displaystyle n} elements, so their sum equals the factorial n ! {\displaystyle n!}
. I.e.
∑ k = 0 n − 1 A ( n , k ) = n ! , for n > 0. {\displaystyle \sum _{k=0}^{n-1}A(n,k)=n!,{\text{ for }}n>0.}
as well as A ( 0 , 0 ) = 0 ! {\displaystyle A(0,0)=0!} . To avoid conflict with the empty sum convention, it is convenient to simply state the theorems for n > 0 {\displaystyle n>0}
only.
Much more generally, for a fixed function f : R → C {\displaystyle f\colon \mathbb {R} \rightarrow \mathbb {C} } integrable on the interval ( 0 , n ) {\displaystyle (0,n)}
[4]
∑ k = 0 n − 1 A ( n , k ) f ( k ) = n ! ∫ 0 1 ⋯ ∫ 0 1 f ( ⌊ x 1 + ⋯ + x n ⌋ ) d x 1 ⋯ d x n {\displaystyle \sum _{k=0}^{n-1}A(n,k)\,f(k)=n!\int _{0}^{1}\cdots \int _{0}^{1}f\left(\left\lfloor x_{1}+\cdots +x_{n}\right\rfloor \right){\mathrm {d} }x_{1}\cdots {\mathrm {d} }x_{n}}
Worpitzky's identity[5] expresses x n {\textstyle x^{n}} as the linear combination of Eulerian numbers with binomial coefficients:
∑ k = 0 n − 1 A ( n , k ) ( x + k n ) = x n . {\displaystyle \sum _{k=0}^{n-1}A(n,k){\binom {x+k}{n}}=x^{n}.}
From this, it follows that
∑ k = 1 m k n = ∑ k = 0 n − 1 A ( n , k ) ( m + k + 1 n + 1 ) . {\displaystyle \sum _{k=1}^{m}k^{n}=\sum _{k=0}^{n-1}A(n,k){\binom {m+k+1}{n+1}}.}
They appear as the coefficients of the polylogarithm. Li − n ( z ) = 1 ( 1 − z ) n + 1 ∑ k = 0 n − 1 ⟨ n k ⟩ z n − k ( n = 1 , 2 , 3 , … ) , {\displaystyle \operatorname {Li} _{-n}(z)={1 \over (1-z)^{n+1}}\sum _{k=0}^{n-1}\left\langle {n \atop k}\right\rangle z^{n-k}\qquad (n=1,2,3,\ldots ),}
Formulas involving alternating sums
[edit]
The alternating sum of the Eulerian numbers for a fixed value of n {\textstyle n} is related to the Bernoulli number B n + 1 {\textstyle B_{n+1}}
∑ k = 0 n − 1 ( − 1 ) k A ( n , k ) = 2 n + 1 ( 2 n + 1 − 1 ) B n + 1 n + 1 , for n > 0. {\displaystyle \sum _{k=0}^{n-1}(-1)^{k}A(n,k)=2^{n+1}(2^{n+1}-1){\frac {B_{n+1}}{n+1}},{\text{ for }}n>0.}
Furthermore,
∑ k = 0 n − 1 ( − 1 ) k A ( n , k ) ( n − 1 k ) = 0 , for n > 1 {\displaystyle \sum _{k=0}^{n-1}(-1)^{k}{\frac {A(n,k)}{\binom {n-1}{k}}}=0,{\text{ for }}n>1}
and
∑ k = 0 n − 1 ( − 1 ) k A ( n , k ) ( n k ) = ( n + 1 ) B n , for n > 1 {\displaystyle \sum _{k=0}^{n-1}(-1)^{k}{\frac {A(n,k)}{\binom {n}{k}}}=(n+1)B_{n},{\text{ for }}n>1}
Formulas involving the polynomials
[edit]
The symmetry property implies:
A n ( t ) = t n − 1 A n ( t − 1 ) {\displaystyle A_{n}(t)=t^{n-1}A_{n}(t^{-1})}
The Eulerian numbers are involved in the generating function for the sequence of _n_th powers:
∑ i = 1 ∞ i n x i = 1 ( 1 − x ) n + 1 ∑ k = 0 n A ( n , k ) x k + 1 = x ( 1 − x ) n + 1 A n ( x ) {\displaystyle \sum _{i=1}^{\infty }i^{n}x^{i}={\frac {1}{(1-x)^{n+1}}}\sum _{k=0}^{n}A(n,k)\,x^{k+1}={\frac {x}{(1-x)^{n+1}}}A_{n}(x)}
An explicit expression for Eulerian polynomials is[6]
A n ( t ) = ∑ k = 0 n { n k } k ! ( t − 1 ) n − k {\displaystyle A_{n}(t)=\sum _{k=0}^{n}\left\{{n \atop k}\right\}k!(t-1)^{n-k}}
where { n k } {\textstyle \left\{{n \atop k}\right\}} is the Stirling number of the second kind.
Geometric interpretations
[edit]
The Eulerian numbers have two important geometric interpretations involving convex polytopes.
First of all, the identity
∑ i = 0 ∞ ( i + 1 ) n x i = 1 ( 1 − x ) n + 1 ∑ k = 0 n A ( n , k ) x k {\displaystyle \sum _{i=0}^{\infty }(i+1)^{n}x^{i}={\frac {1}{(1-x)^{n+1}}}\sum _{k=0}^{n}A(n,k)\,x^{k}}
implies that the Eulerian numbers form the h ∗ {\displaystyle h^{\ast }} -vector of the standard n {\displaystyle n}
-dimensional hypercube, which is the convex hull of all 0 , 1 {\displaystyle 0,1}
-vectors in R n {\displaystyle \mathbb {R} ^{n}}
.
Secondly, the identity A n ( t ) = ∑ k = 0 n { n k } k ! ( t − 1 ) n − k {\displaystyle A_{n}(t)=\sum _{k=0}^{n}\left\{{n \atop k}\right\}k!(t-1)^{n-k}} means that the Eulerian numbers also form the h {\displaystyle h}
-vector of the simple polytope which is dual to the n {\displaystyle n}
-dimensional permutohedron, which is the convex hull of all permutations of the vector ( 1 , 2 , … , n ) {\displaystyle (1,2,\ldots ,n)}
in R n {\displaystyle \mathbb {R} ^{n}}
.
In fact, as explained by Richard Stanley in an answer to a MathOverflow question, these two geometric guises of the Eulerian numbers are closely linked.
Type B Eulerian numbers
[edit]
The hyperoctahedral group of order n {\displaystyle n} is the group of all signed permutations of the numbers 1 {\displaystyle 1}
to n {\displaystyle n}
, meaning bijections π {\displaystyle \pi }
from the set { − n , − n + 1 , … , − 1 , 1 , 2 , … , n } {\displaystyle \{-n,-n+1,\ldots ,-1,1,2,\ldots ,n\}}
to itself with the property that π ( − i ) = − π ( i ) {\displaystyle \pi (-i)=-\pi (i)}
for all i {\displaystyle i}
. Just as the symmetric group of order n {\displaystyle n}
(i.e., the group of all permutations of the numbers 1 {\displaystyle 1}
to n {\displaystyle n}
) is the Coxeter group of Type A n − 1 {\displaystyle A_{n-1}}
, the hyperoctahedral group of order n {\displaystyle n}
is the Coxeter group of Type B n {\displaystyle B_{n}}
.
Given an element π {\displaystyle \pi } of the hyperoctahedral group of order n {\displaystyle n}
a Type B descent of π {\displaystyle \pi }
is an index i ∈ { 0 , 1 , … , n − 1 } {\displaystyle i\in \{0,1,\ldots ,n-1\}}
for which π ( i ) > π ( i − 1 ) {\displaystyle \pi (i)>\pi (i-1)}
, with the convention that π ( 0 ) = 0 {\displaystyle \pi (0)=0}
. The Type B Eulerian number B ( n , k ) {\displaystyle B(n,k)}
is the number of elements of the hyperoctahedral group of order n {\displaystyle n}
with exactly k {\displaystyle k}
descents; see Chow and Gessel[7].
The table of B ( n , k ) {\displaystyle B(n,k)} (sequence A060187 in the OEIS) is
k n | 0 | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|---|
0 | 1 | |||||
1 | 1 | 1 | ||||
2 | 1 | 6 | 1 | |||
3 | 1 | 23 | 23 | 1 | ||
4 | 1 | 76 | 230 | 76 | 1 | |
5 | 1 | 237 | 1682 | 1682 | 237 | 1 |
The corresponding polynomials M n ( x ) = ∑ k = 0 n B ( n , k ) x k {\displaystyle M_{n}(x)=\sum _{k=0}^{n}B(n,k)x^{k}} are called midpoint Eulerian polynomials because of their use in interpolation and spline theory; see Schoenberg[8].
The Type B Eulerian numbers and polynomials satisfy many similar identities, and have many similar properties, as the Type A, i.e., usual, Eulerian numbers and polynomials. For example, for any n ≥ 1 {\displaystyle n\geq 1} ,
∑ i = 0 ∞ ( 2 i + 1 ) n x i = M n ( x ) ( 1 − x ) n + 1 . {\displaystyle \sum _{i=0}^{\infty }(2i+1)^{n}x^{i}={\frac {M_{n}(x)}{(1-x)^{n+1}}}.}
And the Type B Eulerian numbers give the h-vector of the simple polytope dual to the Type B permutohedron.
In fact, one can define Eulerian numbers for any finite Coxeter group with analogous properties: see part III of the textbook of Petersen in the references.
Eulerian numbers of the second order
[edit]
The permutations of the multiset { 1 , 1 , 2 , 2 , … , n , n } {\textstyle \{1,1,2,2,\ldots ,n,n\}} which have the property that for each k, all the numbers appearing between the two occurrences of k in the permutation are greater than k are counted by the double factorial number ( 2 n − 1 ) ! ! {\textstyle (2n-1)!!}
. These are called Stirling permutations.
The Eulerian number of the second order, denoted ⟨ ⟨ n m ⟩ ⟩ {\textstyle \left\langle \!\left\langle {n \atop m}\right\rangle \!\right\rangle } , counts the number of all such Stirling permutations that have exactly m ascents. For instance, for n = 3 there are 15 such permutations, 1 with no ascents, 8 with a single ascent, and 6 with two ascents:
332211,
221133, 221331, 223311, 233211, 113322, 133221, 331122, 331221,
112233, 122133, 112332, 123321, 133122, 122331.
The Eulerian numbers of the second order satisfy the recurrence relation, that follows directly from the above definition:
⟨ ⟨ n k ⟩ ⟩ = ( 2 n − k − 1 ) ⟨ ⟨ n − 1 k − 1 ⟩ ⟩ + ( k + 1 ) ⟨ ⟨ n − 1 k ⟩ ⟩ , {\displaystyle \left\langle \!\!\left\langle {n \atop k}\right\rangle \!\!\right\rangle =(2n-k-1)\left\langle \!\!\left\langle {n-1 \atop k-1}\right\rangle \!\!\right\rangle +(k+1)\left\langle \!\!\left\langle {n-1 \atop k}\right\rangle \!\!\right\rangle ,}
with initial condition for n = 0, expressed in Iverson bracket notation:
⟨ ⟨ 0 k ⟩ ⟩ = [ k = 0 ] . {\displaystyle \left\langle \!\!\left\langle {0 \atop k}\right\rangle \!\!\right\rangle =[k=0].}
Correspondingly, the Eulerian polynomial of second order, here denoted P n (no standard notation exists for them) are
P n ( x ) := ∑ k = 0 n ⟨ ⟨ n k ⟩ ⟩ x k {\displaystyle P_{n}(x):=\sum _{k=0}^{n}\left\langle \!\!\left\langle {n \atop k}\right\rangle \!\!\right\rangle x^{k}}
and the above recurrence relations are translated into a recurrence relation for the sequence P n(x):
P n + 1 ( x ) = ( 2 n x + 1 ) P n ( x ) − x ( x − 1 ) P n ′ ( x ) {\displaystyle P_{n+1}(x)=(2nx+1)P_{n}(x)-x(x-1)P_{n}^{\prime }(x)}
with initial condition P 0 ( x ) = 1 {\displaystyle P_{0}(x)=1} . The latter recurrence may be written in a somewhat more compact form by means of an integrating factor:
( x − 1 ) − 2 n − 2 P n + 1 ( x ) = ( x ( 1 − x ) − 2 n − 1 P n ( x ) ) ′ {\displaystyle (x-1)^{-2n-2}P_{n+1}(x)=\left(x\,(1-x)^{-2n-1}P_{n}(x)\right)^{\prime }}
so that the rational function
u n ( x ) := ( x − 1 ) − 2 n P n ( x ) {\displaystyle u_{n}(x):=(x-1)^{-2n}P_{n}(x)}
satisfies a simple autonomous recurrence:
u n + 1 = ( x 1 − x u n ) ′ , u 0 = 1 {\displaystyle u_{n+1}=\left({\frac {x}{1-x}}u_{n}\right)^{\prime },\quad u_{0}=1}
Whence one obtains the Eulerian polynomials of second order as P n ( x ) = ( 1 − x ) 2 n u n ( x ) {\textstyle P_{n}(x)=(1-x)^{2n}u_{n}(x)} , and the Eulerian numbers of second order as their coefficients.
The Eulerian polynomials of the second order satisfy an identity analogous to the identity
∑ i = 1 ∞ i n x i = x A n ( x ) ( 1 − x ) n + 1 {\displaystyle \sum _{i=1}^{\infty }i^{n}x^{i}={\frac {xA_{n}(x)}{(1-x)^{n+1}}}}
satisfied by the usual Eulerian polynomials. Specifically, as proved by Gessel and Stanley[9], they satisfy the identity
∑ m = 0 ∞ { n + m m } x m = x P n ( x ) ( 1 − x ) 2 n + 1 {\displaystyle \sum _{m=0}^{\infty }\left\{{n+m \atop m}\right\}x^{m}={\frac {xP_{n}(x)}{(1-x)^{2n+1}}}}
where again the { n k } {\displaystyle \left\{{n \atop k}\right\}} denote the Stirling numbers of the second kind. (This appearance of the Stirling numbers explains the terminology "Stirling permutations.")
The following table displays the first few second-order Eulerian numbers:
k n | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|---|
0 | 1 | ||||||||
1 | 1 | ||||||||
2 | 1 | 2 | |||||||
3 | 1 | 8 | 6 | ||||||
4 | 1 | 22 | 58 | 24 | |||||
5 | 1 | 52 | 328 | 444 | 120 | ||||
6 | 1 | 114 | 1452 | 4400 | 3708 | 720 | |||
7 | 1 | 240 | 5610 | 32120 | 58140 | 33984 | 5040 | ||
8 | 1 | 494 | 19950 | 195800 | 644020 | 785304 | 341136 | 40320 | |
9 | 1 | 1004 | 67260 | 1062500 | 5765500 | 12440064 | 11026296 | 3733920 | 362880 |
The sum of the _n_-th row, which is also the value P n ( 1 ) {\textstyle P_{n}(1)} , is ( 2 n − 1 ) ! ! {\textstyle (2n-1)!!}
.
Indexing the second-order Eulerian numbers comes in three flavors:
- (sequence A008517 in the OEIS) following Riordan and Comtet,
- (sequence A201637 in the OEIS) following Graham, Knuth, and Patashnik,
- (sequence A340556 in the OEIS), extending the definition of Gessel and Stanley.
- Eulerus, Leonardus [Leonhard Euler] (1755). Institutiones calculi differentialis cum eius usu in analysi finitorum ac doctrina serierum [Foundations of differential calculus, with applications to finite analysis and series]. Academia imperialis scientiarum Petropolitana; Berolini: Officina Michaelis.
- Carlitz, L. (1959). "Eulerian Numbers and polynomials". Math. Mag. 32 (5): 247–260. doi:10.2307/3029225. JSTOR 3029225.
- Gould, H. W. (1978). "Evaluation of sums of convolved powers using Stirling and Eulerian Numbers". Fib. Quart. 16 (6): 488–497. doi:10.1080/00150517.1978.12430271.
- Desarmenien, Jacques; Foata, Dominique (1992). "The signed Eulerian numbers". Discrete Math. 99 (1–3): 49–58. doi:10.1016/0012-365X(92)90364-L.
- Lesieur, Leonce; Nicolas, Jean-Louis (1992). "On the Eulerian Numbers M=max (A(n,k))". Europ. J. Combinat. 13 (5): 379–399. doi:10.1016/S0195-6698(05)80018-6.
- Butzer, P. L.; Hauss, M. (1993). "Eulerian numbers with fractional order parameters". Aequationes Mathematicae. 46 (1–2): 119–142. doi:10.1007/bf01834003. S2CID 121868847.
- Koutras, M.V. (1994). "Eulerian numbers associated with sequences of polynomials". Fib. Quart. 32 (1): 44–57. doi:10.1080/00150517.1994.12429255.
- Graham; Knuth; Patashnik (1994). Concrete Mathematics: A Foundation for Computer Science (2nd ed.). Addison-Wesley. pp. 267–272.
- Hsu, Leetsch C.; Jau-Shyong Shiue, Peter (1999). "On certain summation problems and generalizations of Eulerian polynomials and numbers". Discrete Math. 204 (1–3): 237–247. doi:10.1016/S0012-365X(98)00379-3.
- Boyadzhiev, Khristo N. (2007). "Apostol-Bernoulli functions, derivative polynomials and Eulerian polynomials". arXiv:0710.1124 [math.CA].
- Petersen, T. Kyle (2015). "Eulerian numbers". Eulerian Numbers. Birkhäuser Advanced Texts Basler Lehrbücher. Birkhäuser. pp. 3–18. doi:10.1007/978-1-4939-3091-3_1. ISBN 978-1-4939-3090-6.
- ^ Euler, Leonhard (1768-01-01). "Remarques sur un beau rapport entre les séries des puissances tant directes que réciproques". Mémoires de l'académie des sciences de Berlin: 83–106.
- ^ (L. Comtet 1974, p. 243)
- ^ Comtet, Louis. Advanced Combinatorics (PDF). p. 51.
- ^ Exercise 6.65 in Concrete Mathematics by Graham, Knuth and Patashnik.
- ^ Worpitzky, J. (1883). "Studien über die Bernoullischen und Eulerschen Zahlen". Journal für die reine und angewandte Mathematik. 94: 203–232.
- ^ Qi, Feng; Guo, Bai-Ni (2017-08-01). "Explicit formulas and recurrence relations for higher order Eulerian polynomials". Indagationes Mathematicae. 28 (4): 884–891. doi:10.1016/j.indag.2017.06.010. ISSN 0019-3577.
- ^ Chow, Chak-On; Gessel, Ira M. (March 2007). "On the descent numbers and major indices for the hyperoctahedral group". Advances in Applied Mathematics. 38 (3): 275–301. doi:10.1016/j.aam.2006.07.003.
- ^ Schoenberg, I. J. (1972). "Cardinal Interpolation and Spline Functions IV. The Exponential Euler Splines". Linear Operators and Approximation / Lineare Operatoren und Approximation: 382–404. doi:10.1007/978-3-0348-7283-6_34. ISBN 978-3-0348-7285-0.
- ^ Gessel, Ira; Stanley, Richard P (1 January 1978). "Stirling polynomials". Journal of Combinatorial Theory, Series A. 24 (1): 24–33. doi:10.1016/0097-3165(78)90042-0.
- Eulerian Polynomials at OEIS Wiki.
- "Eulerian Numbers". MathPages.com.
- Weisstein, Eric W. "Eulerian Number". MathWorld.
- Weisstein, Eric W. "Euler's Number Triangle". MathWorld.
- Weisstein, Eric W. "Worpitzky's Identity". MathWorld.
- Weisstein, Eric W. "Second-Order Eulerian Triangle". MathWorld.
- Euler-matrix (generalized rowindexes, divergent summation)