Forward rate (original) (raw)

From Wikipedia, the free encyclopedia

Future yield on a bond

The forward rate is the future yield on a bond. It is calculated using the yield curve. For example, the yield on a three-month Treasury bill six months from now is a forward rate.[1]

Forward rate calculation

[edit]

To extract the forward rate, we need the zero-coupon yield curve.

We are trying to find the future interest rate r 1 , 2 {\displaystyle r_{1,2}} {\displaystyle r_{1,2}} for time period ( t 1 , t 2 ) {\displaystyle (t_{1},t_{2})} {\displaystyle (t_{1},t_{2})}, t 1 {\displaystyle t_{1}} {\displaystyle t_{1}} and t 2 {\displaystyle t_{2}} {\displaystyle t_{2}} expressed in years, given the rate r 1 {\displaystyle r_{1}} {\displaystyle r_{1}} for time period ( 0 , t 1 ) {\displaystyle (0,t_{1})} {\displaystyle (0,t_{1})} and rate r 2 {\displaystyle r_{2}} {\displaystyle r_{2}} for time period ( 0 , t 2 ) {\displaystyle (0,t_{2})} {\displaystyle (0,t_{2})}. To do this, we use the property that the proceeds from investing at rate r 1 {\displaystyle r_{1}} {\displaystyle r_{1}} for time period ( 0 , t 1 ) {\displaystyle (0,t_{1})} {\displaystyle (0,t_{1})} and then reinvesting those proceeds at rate r 1 , 2 {\displaystyle r_{1,2}} {\displaystyle r_{1,2}} for time period ( t 1 , t 2 ) {\displaystyle (t_{1},t_{2})} {\displaystyle (t_{1},t_{2})} is equal to the proceeds from investing at rate r 2 {\displaystyle r_{2}} {\displaystyle r_{2}} for time period ( 0 , t 2 ) {\displaystyle (0,t_{2})} {\displaystyle (0,t_{2})}.

r 1 , 2 {\displaystyle r_{1,2}} {\displaystyle r_{1,2}} depends on the rate calculation mode (simple, yearly compounded or continuously compounded), which yields three different results.

Mathematically it reads as follows:

( 1 + r 1 t 1 ) ( 1 + r 1 , 2 ( t 2 − t 1 ) ) = 1 + r 2 t 2 {\displaystyle (1+r_{1}t_{1})(1+r_{1,2}(t_{2}-t_{1}))=1+r_{2}t_{2}} {\displaystyle (1+r_{1}t_{1})(1+r_{1,2}(t_{2}-t_{1}))=1+r_{2}t_{2}}

Solving for r 1 , 2 {\displaystyle r_{1,2}} {\displaystyle r_{1,2}} yields:

Thus r 1 , 2 = 1 t 2 − t 1 ( 1 + r 2 t 2 1 + r 1 t 1 − 1 ) {\displaystyle r_{1,2}={\frac {1}{t_{2}-t_{1}}}\left({\frac {1+r_{2}t_{2}}{1+r_{1}t_{1}}}-1\right)} {\displaystyle r_{1,2}={\frac {1}{t_{2}-t_{1}}}\left({\frac {1+r_{2}t_{2}}{1+r_{1}t_{1}}}-1\right)}

The discount factor formula for period (0, t) Δ t {\displaystyle \Delta _{t}} {\displaystyle \Delta _{t}} expressed in years, and rate r t {\displaystyle r_{t}} {\displaystyle r_{t}} for this period being D F ( 0 , t ) = 1 ( 1 + r t Δ t ) {\displaystyle DF(0,t)={\frac {1}{(1+r_{t}\,\Delta _{t})}}} {\displaystyle DF(0,t)={\frac {1}{(1+r_{t}\,\Delta _{t})}}}, the forward rate can be expressed in terms of discount factors: r 1 , 2 = 1 t 2 − t 1 ( D F ( 0 , t 1 ) D F ( 0 , t 2 ) − 1 ) {\displaystyle r_{1,2}={\frac {1}{t_{2}-t_{1}}}\left({\frac {DF(0,t_{1})}{DF(0,t_{2})}}-1\right)} {\displaystyle r_{1,2}={\frac {1}{t_{2}-t_{1}}}\left({\frac {DF(0,t_{1})}{DF(0,t_{2})}}-1\right)}

Yearly compounded rate

[edit]

( 1 + r 1 ) t 1 ( 1 + r 1 , 2 ) t 2 − t 1 = ( 1 + r 2 ) t 2 {\displaystyle (1+r_{1})^{t_{1}}(1+r_{1,2})^{t_{2}-t_{1}}=(1+r_{2})^{t_{2}}} {\displaystyle (1+r_{1})^{t_{1}}(1+r_{1,2})^{t_{2}-t_{1}}=(1+r_{2})^{t_{2}}}

Solving for r 1 , 2 {\displaystyle r_{1,2}} {\displaystyle r_{1,2}} yields :

r 1 , 2 = ( ( 1 + r 2 ) t 2 ( 1 + r 1 ) t 1 ) 1 / ( t 2 − t 1 ) − 1 {\displaystyle r_{1,2}=\left({\frac {(1+r_{2})^{t_{2}}}{(1+r_{1})^{t_{1}}}}\right)^{1/(t_{2}-t_{1})}-1} {\displaystyle r_{1,2}=\left({\frac {(1+r_{2})^{t_{2}}}{(1+r_{1})^{t_{1}}}}\right)^{1/(t_{2}-t_{1})}-1}

The discount factor formula for period (0,t) Δ t {\displaystyle \Delta _{t}} {\displaystyle \Delta _{t}} expressed in years, and rate r t {\displaystyle r_{t}} {\displaystyle r_{t}} for this period being D F ( 0 , t ) = 1 ( 1 + r t ) Δ t {\displaystyle DF(0,t)={\frac {1}{(1+r_{t})^{\Delta _{t}}}}} {\displaystyle DF(0,t)={\frac {1}{(1+r_{t})^{\Delta _{t}}}}}, the forward rate can be expressed in terms of discount factors:

r 1 , 2 = ( D F ( 0 , t 1 ) D F ( 0 , t 2 ) ) 1 / ( t 2 − t 1 ) − 1 {\displaystyle r_{1,2}=\left({\frac {DF(0,t_{1})}{DF(0,t_{2})}}\right)^{1/(t_{2}-t_{1})}-1} {\displaystyle r_{1,2}=\left({\frac {DF(0,t_{1})}{DF(0,t_{2})}}\right)^{1/(t_{2}-t_{1})}-1}

Continuously compounded rate

[edit]

e r 2 ⋅ t 2 = e r 1 ⋅ t 1 ⋅ e r 1 , 2 ⋅ ( t 2 − t 1 ) {\displaystyle e^{r_{2}\cdot t_{2}}=e^{r_{1}\cdot t_{1}}\cdot \ e^{r_{1,2}\cdot \left(t_{2}-t_{1}\right)}} {\displaystyle e^{r_{2}\cdot t_{2}}=e^{r_{1}\cdot t_{1}}\cdot \ e^{r_{1,2}\cdot \left(t_{2}-t_{1}\right)}}

Solving for r 1 , 2 {\displaystyle r_{1,2}} {\displaystyle r_{1,2}} yields:

STEP 1→ e r 2 ⋅ t 2 = e r 1 ⋅ t 1 + r 1 , 2 ⋅ ( t 2 − t 1 ) {\displaystyle e^{r_{2}\cdot t_{2}}=e^{r_{1}\cdot t_{1}+r_{1,2}\cdot \left(t_{2}-t_{1}\right)}} {\displaystyle e^{r_{2}\cdot t_{2}}=e^{r_{1}\cdot t_{1}+r_{1,2}\cdot \left(t_{2}-t_{1}\right)}}

STEP 2→ ln ⁡ ( e r 2 ⋅ t 2 ) = ln ⁡ ( e r 1 ⋅ t 1 + r 1 , 2 ⋅ ( t 2 − t 1 ) ) {\displaystyle \ln \left(e^{r_{2}\cdot t_{2}}\right)=\ln \left(e^{r_{1}\cdot t_{1}+r_{1,2}\cdot \left(t_{2}-t_{1}\right)}\right)} {\displaystyle \ln \left(e^{r_{2}\cdot t_{2}}\right)=\ln \left(e^{r_{1}\cdot t_{1}+r_{1,2}\cdot \left(t_{2}-t_{1}\right)}\right)}

STEP 3→ r 2 ⋅ t 2 = r 1 ⋅ t 1 + r 1 , 2 ⋅ ( t 2 − t 1 ) {\displaystyle r_{2}\cdot t_{2}=r_{1}\cdot t_{1}+r_{1,2}\cdot \left(t_{2}-t_{1}\right)} {\displaystyle r_{2}\cdot t_{2}=r_{1}\cdot t_{1}+r_{1,2}\cdot \left(t_{2}-t_{1}\right)}

STEP 4→ r 1 , 2 ⋅ ( t 2 − t 1 ) = r 2 ⋅ t 2 − r 1 ⋅ t 1 {\displaystyle r_{1,2}\cdot \left(t_{2}-t_{1}\right)=r_{2}\cdot t_{2}-r_{1}\cdot t_{1}} {\displaystyle r_{1,2}\cdot \left(t_{2}-t_{1}\right)=r_{2}\cdot t_{2}-r_{1}\cdot t_{1}}

STEP 5→ r 1 , 2 = r 2 ⋅ t 2 − r 1 ⋅ t 1 t 2 − t 1 {\displaystyle r_{1,2}={\frac {r_{2}\cdot t_{2}-r_{1}\cdot t_{1}}{t_{2}-t_{1}}}} {\displaystyle r_{1,2}={\frac {r_{2}\cdot t_{2}-r_{1}\cdot t_{1}}{t_{2}-t_{1}}}}

The discount factor formula for period (0,t) Δ t {\displaystyle \Delta _{t}} {\displaystyle \Delta _{t}} expressed in years, and rate r t {\displaystyle r_{t}} {\displaystyle r_{t}} for this period being D F ( 0 , t ) = e − r t Δ t {\displaystyle DF(0,t)=e^{-r_{t}\,\Delta _{t}}} {\displaystyle DF(0,t)=e^{-r_{t}\,\Delta _{t}}}, the forward rate can be expressed in terms of discount factors:

r 1 , 2 = ln ⁡ ( D F ( 0 , t 1 ) ) − ln ⁡ ( D F ( 0 , t 2 ) ) t 2 − t 1 = − ln ⁡ ( D F ( 0 , t 2 ) D F ( 0 , t 1 ) ) t 2 − t 1 {\displaystyle r_{1,2}={\frac {\ln \left(DF\left(0,t_{1}\right)\right)-\ln \left(DF\left(0,t_{2}\right)\right)}{t_{2}-t_{1}}}={\frac {-\ln \left({\frac {DF\left(0,t_{2}\right)}{DF\left(0,t_{1}\right)}}\right)}{t_{2}-t_{1}}}} {\displaystyle r_{1,2}={\frac {\ln \left(DF\left(0,t_{1}\right)\right)-\ln \left(DF\left(0,t_{2}\right)\right)}{t_{2}-t_{1}}}={\frac {-\ln \left({\frac {DF\left(0,t_{2}\right)}{DF\left(0,t_{1}\right)}}\right)}{t_{2}-t_{1}}}}

r 1 , 2 {\displaystyle r_{1,2}} {\displaystyle r_{1,2}} is the forward rate between time t 1 {\displaystyle t_{1}} {\displaystyle t_{1}} and time t 2 {\displaystyle t_{2}} {\displaystyle t_{2}},

r k {\displaystyle r_{k}} {\displaystyle r_{k}} is the zero-coupon yield for the time period ( 0 , t k ) {\displaystyle (0,t_{k})} {\displaystyle (0,t_{k})}, (k = 1,2).

  1. ^ Fabozzi, Vamsi.K (2012), The Handbook of Fixed Income Securities (Seventh ed.), New York: kvrv, p. 148, ISBN 978-0-07-144099-8.