Hyperstructure (original) (raw)

From Wikipedia, the free encyclopedia

Algebraic structure equipped with at least one multivalued operation

This article is about a mathematical concept. For the architectural concept, see arcology.

Hyperstructures are algebraic structures equipped with at least one multi-valued operation, called a hyperoperation. The largest classes of the hyperstructures are the ones called H v {\displaystyle Hv} {\displaystyle Hv} – structures.

A hyperoperation ( ⋆ ) {\displaystyle (\star )} {\displaystyle (\star )} on a nonempty set H {\displaystyle H} {\displaystyle H} is a mapping from H × H {\displaystyle H\times H} {\displaystyle H\times H} to the nonempty power set P ∗ ( H ) {\displaystyle P^{*}\!(H)} {\displaystyle P^{*}\!(H)}, meaning the set of all nonempty subsets of H {\displaystyle H} {\displaystyle H}, i.e.

⋆ : H × H → P ∗ ( H ) {\displaystyle \star :H\times H\to P^{*}\!(H)} {\displaystyle \star :H\times H\to P^{*}\!(H)}

( x , y ) ↦ x ⋆ y ⊆ H . {\displaystyle \quad \ (x,y)\mapsto x\star y\subseteq H.} {\displaystyle \quad \ (x,y)\mapsto x\star y\subseteq H.}

For A , B ⊆ H {\displaystyle A,B\subseteq H} {\displaystyle A,B\subseteq H} we define

A ⋆ B = ⋃ a ∈ A , b ∈ B a ⋆ b {\displaystyle A\star B=\bigcup _{a\in A,\,b\in B}a\star b} {\displaystyle A\star B=\bigcup _{a\in A,\,b\in B}a\star b} and A ⋆ x = A ⋆ { x } , {\displaystyle A\star x=A\star \{x\},\,} {\displaystyle A\star x=A\star \{x\},\,} x ⋆ B = { x } ⋆ B . {\displaystyle x\star B=\{x\}\star B.} {\displaystyle x\star B=\{x\}\star B.}

( H , ⋆ ) {\displaystyle (H,\star )} {\displaystyle (H,\star )} is a semihypergroup if ( ⋆ ) {\displaystyle (\star )} {\displaystyle (\star )} is an associative hyperoperation, i.e. x ⋆ ( y ⋆ z ) = ( x ⋆ y ) ⋆ z {\displaystyle x\star (y\star z)=(x\star y)\star z} {\displaystyle x\star (y\star z)=(x\star y)\star z} for all x , y , z ∈ H . {\displaystyle x,y,z\in H.} {\displaystyle x,y,z\in H.}

Furthermore, a hypergroup is a semihypergroup ( H , ⋆ ) {\displaystyle (H,\star )} {\displaystyle (H,\star )}, where the reproduction axiom is valid, i.e. a ⋆ H = H ⋆ a = H {\displaystyle a\star H=H\star a=H} {\displaystyle a\star H=H\star a=H} for all a ∈ H . {\displaystyle a\in H.} {\displaystyle a\in H.}