Index set (computability) (original) (raw)

From Wikipedia, the free encyclopedia

Classes of partial recursive functions

In computability theory, index sets describe classes of computable functions; specifically, they give all indices of functions in a certain class, according to a fixed Gödel numbering of partial computable functions.

Let φ e {\displaystyle \varphi _{e}} {\displaystyle \varphi _{e}} be a computable enumeration of all partial computable functions, and W e {\displaystyle W_{e}} {\displaystyle W_{e}} be a computable enumeration of all c.e. sets.

Let A {\displaystyle {\mathcal {A}}} {\displaystyle {\mathcal {A}}} be a class of partial computable functions. If A = { x : φ x ∈ A } {\displaystyle A=\{x\,:\,\varphi _{x}\in {\mathcal {A}}\}} {\displaystyle A=\{x\,:\,\varphi _{x}\in {\mathcal {A}}\}} then A {\displaystyle A} {\displaystyle A} is the index set of A {\displaystyle {\mathcal {A}}} {\displaystyle {\mathcal {A}}}. In general A {\displaystyle A} {\displaystyle A} is an index set if for every x , y ∈ N {\displaystyle x,y\in \mathbb {N} } {\displaystyle x,y\in \mathbb {N} } with φ x ≃ φ y {\displaystyle \varphi _{x}\simeq \varphi _{y}} {\displaystyle \varphi _{x}\simeq \varphi _{y}} (i.e. they index the same function), we have x ∈ A ↔ y ∈ A {\displaystyle x\in A\leftrightarrow y\in A} {\displaystyle x\in A\leftrightarrow y\in A}. Intuitively, these are the sets of natural numbers that we describe only with reference to the functions they index.

Index sets and Rice's theorem

[edit]

Most index sets are non-computable, aside from two trivial exceptions. This is stated in Rice's theorem:

Let C {\displaystyle {\mathcal {C}}} {\displaystyle {\mathcal {C}}} be a class of partial computable functions with its index set C {\displaystyle C} {\displaystyle C}. Then C {\displaystyle C} {\displaystyle C} is computable if and only if C {\displaystyle C} {\displaystyle C} is empty, or C {\displaystyle C} {\displaystyle C} is all of N {\displaystyle \mathbb {N} } {\displaystyle \mathbb {N} }.

Rice's theorem says "any nontrivial property of partial computable functions is undecidable".[1]

Completeness in the arithmetical hierarchy

[edit]

Index sets provide many examples of sets which are complete at some level of the arithmetical hierarchy. Here, we say a Σ n {\displaystyle \Sigma _{n}} {\displaystyle \Sigma _{n}} set A {\displaystyle A} {\displaystyle A} is Σ n {\displaystyle \Sigma _{n}} {\displaystyle \Sigma {n}}-complete if, for every Σ n {\displaystyle \Sigma _{n}} {\displaystyle \Sigma _{n}} set B {\displaystyle B} {\displaystyle B}, there is an m-reduction from B {\displaystyle B} {\displaystyle B} to A {\displaystyle A} {\displaystyle A}. Π n {\displaystyle \Pi _{n}} {\displaystyle \Pi _{n}}-completeness is defined similarly. Here are some examples:[2]

Empirically, if the "most obvious" definition of a set A {\displaystyle A} {\displaystyle A} is Σ n {\displaystyle \Sigma _{n}} {\displaystyle \Sigma _{n}} [resp. Π n {\displaystyle \Pi _{n}} {\displaystyle \Pi _{n}}], we can usually show that A {\displaystyle A} {\displaystyle A} is Σ n {\displaystyle \Sigma _{n}} {\displaystyle \Sigma _{n}}-complete [resp. Π n {\displaystyle \Pi _{n}} {\displaystyle \Pi _{n}}-complete].

  1. ^ Odifreddi, P. G. Classical Recursion Theory, Volume 1.; page 151
  2. ^ Soare, Robert I. (2016), "Turing Reducibility", Turing Computability, Theory and Applications of Computability, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 51–78, doi:10.1007/978-3-642-31933-4_3, ISBN 978-3-642-31932-7, retrieved 2021-04-21