Index set (computability) (original) (raw)
From Wikipedia, the free encyclopedia
Classes of partial recursive functions
In computability theory, index sets describe classes of computable functions; specifically, they give all indices of functions in a certain class, according to a fixed Gödel numbering of partial computable functions.
Let φ e {\displaystyle \varphi _{e}} be a computable enumeration of all partial computable functions, and W e {\displaystyle W_{e}}
be a computable enumeration of all c.e. sets.
Let A {\displaystyle {\mathcal {A}}} be a class of partial computable functions. If A = { x : φ x ∈ A } {\displaystyle A=\{x\,:\,\varphi _{x}\in {\mathcal {A}}\}}
then A {\displaystyle A}
is the index set of A {\displaystyle {\mathcal {A}}}
. In general A {\displaystyle A}
is an index set if for every x , y ∈ N {\displaystyle x,y\in \mathbb {N} }
with φ x ≃ φ y {\displaystyle \varphi _{x}\simeq \varphi _{y}}
(i.e. they index the same function), we have x ∈ A ↔ y ∈ A {\displaystyle x\in A\leftrightarrow y\in A}
. Intuitively, these are the sets of natural numbers that we describe only with reference to the functions they index.
Index sets and Rice's theorem
[edit]
Most index sets are non-computable, aside from two trivial exceptions. This is stated in Rice's theorem:
Let C {\displaystyle {\mathcal {C}}}
be a class of partial computable functions with its index set C {\displaystyle C}
. Then C {\displaystyle C}
is computable if and only if C {\displaystyle C}
is empty, or C {\displaystyle C}
is all of N {\displaystyle \mathbb {N} }
.
Rice's theorem says "any nontrivial property of partial computable functions is undecidable".[1]
Completeness in the arithmetical hierarchy
[edit]
Index sets provide many examples of sets which are complete at some level of the arithmetical hierarchy. Here, we say a Σ n {\displaystyle \Sigma _{n}} set A {\displaystyle A}
is Σ n {\displaystyle \Sigma _{n}}
-complete if, for every Σ n {\displaystyle \Sigma _{n}}
set B {\displaystyle B}
, there is an m-reduction from B {\displaystyle B}
to A {\displaystyle A}
. Π n {\displaystyle \Pi _{n}}
-completeness is defined similarly. Here are some examples:[2]
- E m p = { e : W e = ∅ } {\displaystyle \mathrm {Emp} =\{e\,:\,W_{e}=\varnothing \}}
is Π 1 {\displaystyle \Pi _{1}}
-complete.
- F i n = { e : W e is finite } {\displaystyle \mathrm {Fin} =\{e\,:\,W_{e}{\text{ is finite}}\}}
is Σ 2 {\displaystyle \Sigma _{2}}
-complete.
- I n f = { e : W e is infinite } {\displaystyle \mathrm {Inf} =\{e\,:\,W_{e}{\text{ is infinite}}\}}
is Π 2 {\displaystyle \Pi _{2}}
-complete.
- T o t = { e : φ e is total } = { e : W e = N } {\displaystyle \mathrm {Tot} =\{e\,:\,\varphi _{e}{\text{ is total}}\}=\{e:W_{e}=\mathbb {N} \}}
is Π 2 {\displaystyle \Pi _{2}}
-complete.
- C o n = { e : φ e is total and constant } {\displaystyle \mathrm {Con} =\{e\,:\,\varphi _{e}{\text{ is total and constant}}\}}
is Π 2 {\displaystyle \Pi _{2}}
-complete.
- C o f = { e : W e is cofinite } {\displaystyle \mathrm {Cof} =\{e\,:\,W_{e}{\text{ is cofinite}}\}}
is Σ 3 {\displaystyle \Sigma _{3}}
-complete.
- R e c = { e : W e is computable } {\displaystyle \mathrm {Rec} =\{e\,:\,W_{e}{\text{ is computable}}\}}
is Σ 3 {\displaystyle \Sigma _{3}}
-complete.
- E x t = { e : φ e is extendible to a total computable function } {\displaystyle \mathrm {Ext} =\{e\,:\,\varphi _{e}{\text{ is extendible to a total computable function}}\}}
is Σ 3 {\displaystyle \Sigma _{3}}
-complete.
- C p l = { e : W e ≡ T H P } {\displaystyle \mathrm {Cpl} =\{e\,:\,W_{e}\equiv _{\mathrm {T} }\mathrm {HP} \}}
is Σ 4 {\displaystyle \Sigma _{4}}
-complete, where H P {\displaystyle \mathrm {HP} }
is the halting problem.
Empirically, if the "most obvious" definition of a set A {\displaystyle A} is Σ n {\displaystyle \Sigma _{n}}
[resp. Π n {\displaystyle \Pi _{n}}
], we can usually show that A {\displaystyle A}
is Σ n {\displaystyle \Sigma _{n}}
-complete [resp. Π n {\displaystyle \Pi _{n}}
-complete].
- ^ Odifreddi, P. G. Classical Recursion Theory, Volume 1.; page 151
- ^ Soare, Robert I. (2016), "Turing Reducibility", Turing Computability, Theory and Applications of Computability, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 51–78, doi:10.1007/978-3-642-31933-4_3, ISBN 978-3-642-31932-7, retrieved 2021-04-21
- Odifreddi, P. G. (1992). Classical Recursion Theory, Volume 1. Elsevier. p. 668. ISBN 0-444-89483-7.
- Rogers Jr., Hartley (1987). Theory of Recursive Functions and Effective Computability. MIT Press. p. 482. ISBN 0-262-68052-1.