Inverse Pythagorean theorem (original) (raw)
From Wikipedia, the free encyclopedia
Relation between the side lengths and altitude of a right triangle
Comparison of the inverse Pythagorean theorem with the Pythagorean theorem using the smallest positive integer inverse-Pythagorean triple in the table below.
Base triple | AC | BC | CD | AB |
---|---|---|---|---|
(3, 4, 5) | 20 = 4× 5 | 15 = 3× 5 | 12 = 3× 4 | 25 = 52 |
(5, 12, 13) | 156 = 12×13 | 65 = 5×13 | 60 = 5×12 | 169 = 132 |
(8, 15, 17) | 255 = 15×17 | 136 = 8×17 | 120 = 8×15 | 289 = 172 |
(7, 24, 25) | 600 = 24×25 | 175 = 7×25 | 168 = 7×24 | 625 = 252 |
(20, 21, 29) | 609 = 21×29 | 580 = 20×29 | 420 = 20×21 | 841 = 292 |
All positive integer primitive inverse-Pythagorean triples having up to three digits, with the hypotenuse for comparison |
In geometry, the inverse Pythagorean theorem (also known as the reciprocal Pythagorean theorem[1] or the upside down Pythagorean theorem[2]) is as follows:[3]
Let A, B be the endpoints of the hypotenuse of a right triangle △ABC. Let D be the foot of a perpendicular dropped from C, the vertex of the right angle, to the hypotenuse. Then
1 C D 2 = 1 A C 2 + 1 B C 2 . {\displaystyle {\frac {1}{CD^{2}}}={\frac {1}{AC^{2}}}+{\frac {1}{BC^{2}}}.}
This theorem should not be confused with proposition 48 in book 1 of Euclid's Elements, the converse of the Pythagorean theorem, which states that if the square on one side of a triangle is equal to the sum of the squares on the other two sides then the other two sides contain a right angle.
The area of triangle △ABC can be expressed in terms of either AC and BC, or AB and CD:
1 2 A C ⋅ B C = 1 2 A B ⋅ C D ( A C ⋅ B C ) 2 = ( A B ⋅ C D ) 2 1 C D 2 = A B 2 A C 2 ⋅ B C 2 {\displaystyle {\begin{aligned}{\tfrac {1}{2}}AC\cdot BC&={\tfrac {1}{2}}AB\cdot CD\\[4pt](AC\cdot BC)^{2}&=(AB\cdot CD)^{2}\\[4pt]{\frac {1}{CD^{2}}}&={\frac {AB^{2}}{AC^{2}\cdot BC^{2}}}\end{aligned}}}
given CD > 0, AC > 0 and BC > 0.
Using the Pythagorean theorem,
1 C D 2 = B C 2 + A C 2 A C 2 ⋅ B C 2 = B C 2 A C 2 ⋅ B C 2 + A C 2 A C 2 ⋅ B C 2 ∴ 1 C D 2 = 1 A C 2 + 1 B C 2 {\displaystyle {\begin{aligned}{\frac {1}{CD^{2}}}&={\frac {BC^{2}+AC^{2}}{AC^{2}\cdot BC^{2}}}\\[4pt]&={\frac {BC^{2}}{AC^{2}\cdot BC^{2}}}+{\frac {AC^{2}}{AC^{2}\cdot BC^{2}}}\\[4pt]\quad \therefore \;\;{\frac {1}{CD^{2}}}&={\frac {1}{AC^{2}}}+{\frac {1}{BC^{2}}}\end{aligned}}}
as above.
Note in particular:
1 2 A C ⋅ B C = 1 2 A B ⋅ C D C D = A C ⋅ B C A B {\displaystyle {\begin{aligned}{\tfrac {1}{2}}AC\cdot BC&={\tfrac {1}{2}}AB\cdot CD\\[4pt]CD&={\tfrac {AC\cdot BC}{AB}}\\[4pt]\end{aligned}}}
Special case of the cruciform curve
[edit]
The cruciform curve or cross curve is a quartic plane curve given by the equation
x 2 y 2 − b 2 x 2 − a 2 y 2 = 0 {\displaystyle x^{2}y^{2}-b^{2}x^{2}-a^{2}y^{2}=0}
where the two parameters determining the shape of the curve, a and b are each CD.
Substituting x with AC and y with BC gives
A C 2 B C 2 − C D 2 A C 2 − C D 2 B C 2 = 0 A C 2 B C 2 = C D 2 B C 2 + C D 2 A C 2 1 C D 2 = B C 2 A C 2 ⋅ B C 2 + A C 2 A C 2 ⋅ B C 2 ∴ 1 C D 2 = 1 A C 2 + 1 B C 2 {\displaystyle {\begin{aligned}AC^{2}BC^{2}-CD^{2}AC^{2}-CD^{2}BC^{2}&=0\\[4pt]AC^{2}BC^{2}&=CD^{2}BC^{2}+CD^{2}AC^{2}\\[4pt]{\frac {1}{CD^{2}}}&={\frac {BC^{2}}{AC^{2}\cdot BC^{2}}}+{\frac {AC^{2}}{AC^{2}\cdot BC^{2}}}\\[4pt]\therefore \;\;{\frac {1}{CD^{2}}}&={\frac {1}{AC^{2}}}+{\frac {1}{BC^{2}}}\end{aligned}}}
Inverse-Pythagorean triples can be generated using integer parameters t and u as follows.[4]
A C = ( t 2 + u 2 ) ( t 2 − u 2 ) B C = 2 t u ( t 2 + u 2 ) C D = 2 t u ( t 2 − u 2 ) {\displaystyle {\begin{aligned}AC&=(t^{2}+u^{2})(t^{2}-u^{2})\\BC&=2tu(t^{2}+u^{2})\\CD&=2tu(t^{2}-u^{2})\end{aligned}}}
If two identical lamps are placed at A and B, the theorem and the inverse-square law imply that the light intensity at C is the same as when a single lamp is placed at D.
- Geometric mean theorem – Theorem about right triangles
- Pythagorean theorem – Relation between sides of a right triangle
- ^ R. B. Nelsen, Proof Without Words: A Reciprocal Pythagorean Theorem, Mathematics Magazine, 82, December 2009, p. 370
- ^ The upside-down Pythagorean theorem, Jennifer Richinick, The Mathematical Gazette, Vol. 92, No. 524 (July 2008), pp. 313-316
- ^ Johan Wästlund, "Summing inverse squares by euclidean geometry", http://www.math.chalmers.se/~wastlund/Cosmic.pdf, pp. 4–5.
- ^ "Diophantine equation of three variables".