Isotopes of radium (original) (raw)

From Wikipedia, the free encyclopedia

Isotopes of radium (88Ra)

Main isotopes[1] Decay abun­dance half-life (_t_1/2) mode pro­duct 223Ra trace 11.43 d α 219Rn 224Ra trace 3.6319 d α 220Rn 225Ra trace 14.9 d β− 225Ac α[2] 221Rn 226Ra trace 1599 y α 222Rn 228Ra trace 5.75 y β− 228Ac
viewtalkedit

Radium (88Ra) has no stable or nearly stable isotopes, and thus a standard atomic weight cannot be given. The longest lived, and most common, isotope of radium is 226Ra with a half-life of 1600 years. 226Ra occurs in the decay chain of 238U (often referred to as the radium series). Radium has 34 known isotopes from 201Ra to 234Ra.

In the early history of the study of radioactivity, the different natural isotopes of radium were given different names, as it was not until Frederick Soddy's scientific career in the early 1900s that the concept of isotopes was realized.[3] In this scheme, 223Ra was named actinium X (AcX), 224Ra thorium X (ThX), 226Ra radium (Ra), and 228Ra mesothorium 1 (MsTh1).[4] When it was realized that all of these are isotopes of the same element, many of these names fell out of use, and "radium" came to refer to all isotopes, not just 226Ra,[5] though mesothorium 1 in particular was still used for some time, with a footnote explaining that it referred to 228Ra.[6] Some of radium-226's decay products received historical names including "radium",[7] ranging from radium A to radium G, with the letter indicating approximately how far they were down the chain from their parent 226Ra.[a]

In 2013 it was discovered that the nucleus of radium-224 is pear-shaped.[10] This was the first discovery of an asymmetrical nucleus.

Nuclide[n 1] Historicname Z N Isotopic mass (Da)[11][n 2][n 3] Half-life[1] Decay mode[1][n 4] Daughter isotope[n 5] Spin andparity[1][n 6][n 7] Isotopic abundance
Excitation energy[n 7]
201Ra 88 113 201.012815(22) 20(30) ms α 197Rn (3/2−)
201mRa 263(26) keV 6(5) ms α 197Rn 13/2+
202Ra 88 114 202.009742(16) 4.1(11) ms α 198Rn 0+
203Ra 88 115 203.009234(10) 36(13) ms α 199Rn 3/2−
203mRa 246(14) keV 25(5) ms α 199Rn 13/2+
204Ra 88 116 204.0065069(96) 60(9) ms α (99.7%) 200Rn 0+
205Ra 88 117 205.006231(24) 220(50) ms α 201Rn 3/2−
205mRa 263(25) keV 180(50) ms α 201Rn 13/2+
206Ra 88 118 206.003828(19) 0.24(2) s α 202Rn 0+
207Ra 88 119 207.003772(63) 1.38(18) s α (86%) 203Rn 5/2−#
β+ (14%) 207Fr
207mRa 560(60) keV 57(8) ms IT (85#%) 207Ra 13/2+
α (?%) 203Rn
208Ra 88 120 208.0018550(97) 1.110(45) s α (87%) 204Rn 0+
β+ (13%) 208Fr
208mRa 2147.4(4) keV 263(17) ns IT 208Ra (8+)
209Ra 88 121 209.0019949(62) 4.71(8) s α (90%) 205Rn 5/2−
209mRa 882.4(7) keV 117(5) μs α (90%) 205Rn 13/2+
β+ (10%) 209Fr
210Ra 88 122 210.0004754(99) 4.0(1) s α 206Rn 0+
210mRa 2050.9(7) keV 2.29(3) μs IT 210Ra 8+
211Ra 88 123 211.0008930(53) 12.6(12) s α 207Rn 5/2−
211mRa 1198.1(8) keV 9.5(3) μs IT 211Ra 13/2+
212Ra 88 124 211.999787(11) 13.0(2) s α (?%) 208Rn 0+
β+ (?%) 212Fr
212m1Ra 1958.4(20) keV 9.3(9) μs IT 212Ra 8+
212m2Ra 2613.3(20) keV 0.85(13) μs IT 212Ra 11−
213Ra 88 125 213.000371(11) 2.73(5) min α (87%) 209Rn 1/2−
β+ (13%) 213Fr
213mRa 1768(4) keV 2.20(5) ms IT (99.4%) 213Ra (17/2−)
α (0.6%) 209Rn
214Ra 88 126 214.0000996(56) 2.437(16) s α (99.94%) 210Rn 0+
β+ (0.059%) 214Fr
214m1Ra 1819.7(18) keV 118(7) ns IT 214Ra 6+
214m2Ra 1865.2(18) keV 67.3(15) μs IT (99.91%) 214Ra 8+
α (0.09%) 210Rn
214m3Ra 2683.2(18) keV 295(7) ns IT 214Ra 11−
214m4Ra 3478.4(18) keV 279(4) ns IT 214Ra 14+
214m5Ra 4146.8(18) keV 225(4) ns IT 214Ra 17−
214m6Ra 6577.0(18) keV 128(4) ns IT 214Ra (25−)
215Ra 88 127 215.0027182(77) 1.669(9) ms α 211Rn 9/2+#
215m1Ra 1877.8(3) keV 7.31(13) μs IT 215Ra (25/2+)
215m2Ra 2246.9(4) keV 1.39(7) μs IT 215Ra (29/2−)
215m3Ra 3807(50)# keV 555(10) ns IT 215Ra (43/2−)
216Ra 88 128 216.0035335(86) 172(7) ns α 212Rn 0+
EC (<1×10−8%) 216Fr
217Ra 88 129 217.0063227(76) 1.95(12) μs α 213Rn (9/2+)
218Ra 88 130 218.007134(11) 25.91(14) μs α 214Rn 0+
219Ra 88 131 219.0100847(73) 9(2) ms α 215Rn (7/2)+
219mRa 16.7(8) keV 10(3) ns α 215Rn (11/2)+
220Ra 88 132 220.0110275(82) 18.1(12) ms α 216Rn 0+
221Ra 88 133 221.0139173(05) 25(4) s α 217Rn 5/2+ Trace[n 8]
CD (1.2×10−10%)[n 9] 207Pb14C
222Ra 88 134 222.0153734(48) 33.6(4) s α 218Rn 0+
CD (3.0×10−8%) 208Pb14C
223Ra[n 10] Actinium X 88 135 223.0185006(22) 11.4352(10) d α 219Rn 3/2+ Trace[n 11]
CD (8.9×10−8%) 209Pb14C
224Ra Thorium X 88 136 224.0202104(19) 3.6316(14) d α 220Rn 0+ Trace[n 12]
CD (4.0×10−9%) 210Pb14C
225Ra 88 137 225.0236105(28) 14.82(19) d β− 225Ac 1/2+ Trace[n 13]
α (2.6×10−3%)[2] 221Rn
226Ra Radium[n 14] 88 138 226.0254082(21) 1600(7) y α[n 15] 222Rn 0+ Trace[n 16]
CD (2.6×10−9%) 212Pb14C
227Ra 88 139 227.0291762(21) 42.2(5) min β− 227Ac 3/2+
228Ra Mesothorium 1 88 140 228.0310686(21) 5.75(3) y β− 228Ac 0+ Trace[n 12]
229Ra 88 141 229.034957(17) 4.0(2) min β− 229Ac 5/2+
230Ra 88 142 230.037055(11) 93(2) min β− 230Ac 0+
231Ra 88 143 231.041027(12) 104(1) s β− 231Ac (5/2+)
231mRa 66.21(9) keV ~53 μs IT 231Ra (1/2+)
232Ra 88 144 232.0434753(98) 4.0(3) min β− 232Ac 0+
233Ra 88 145 233.0475946(92) 30(5) s β− 233Ac 1/2+#
234Ra 88 146 234.0503821(90) 30(10) s β− 234Ac 0+
This table header & footer: view
  1. ^ mRa – Excited nuclear isomer.
  2. ^ ( ) – Uncertainty (1_σ_) is given in concise form in parentheses after the corresponding last digits.
  3. ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^ Modes of decay:
  5. ^ Bold symbol as daughter – Daughter product is stable.
  6. ^ ( ) spin value – Indicates spin with weak assignment arguments.
  7. ^ a b # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  8. ^ Intermediate decay product of 237Np
  9. ^ Lightest known nuclide to undergo cluster decay
  10. ^ Used for treating bone cancer
  11. ^ Intermediate decay product of 235U
  12. ^ a b Intermediate decay product of 232Th
  13. ^ Intermediate decay product of 237Np
  14. ^ Source of element's name
  15. ^ Theoretically capable of β-β- decay to 226Th
  16. ^ Intermediate decay product of 238U

Actinides vs fission products

[edit]

Actinides and fission products by half-life vte
Actinides[12] by decay chain Half-life range (a) Fission products of 235U by yield[13]
4_n_ 4_n_ + 1 4_n_ + 2 4_n_ + 3 4.5–7% 0.04–1.25% <0.001%
228Ra№ 4–6 a 155Euþ
248Bk[14] > 9 a
244Cmƒ 241Puƒ 250Cf 227Ac№ 10–29 a 90Sr 85Kr 113mCdþ
232 238Puƒ 243Cmƒ 29–97 a 137Cs 151Smþ 121mSn
249Cfƒ 242mAmƒ 141–351 a No fission products have a half-lifein the range of 100 a–210 ka ...
241Amƒ 251Cfƒ[15] 430–900 a
226Ra№ 247Bk 1.3–1.6 ka
240Pu 229Th 246Cmƒ 243Amƒ 4.7–7.4 ka
245Cmƒ 250Cm 8.3–8.5 ka
239Puƒ 24.1 ka
230Th№ 231Pa№ 32–76 ka
236Npƒ 233 234U№ 150–250 ka 99Tc₡ 126Sn
248Cm 242Pu 327–375 ka 79Se₡
1.33 Ma 135Cs₡
237Npƒ 1.61–6.5 Ma 93Zr 107Pd
236U 247Cmƒ 15–24 Ma 129I₡
244Pu 80 Ma ... nor beyond 15.7 Ma[16]
232Th№ 238U№ 235Uƒ№ 0.7–14.1 Ga
₡, has thermal neutron capture cross section in the range of 8–50 barnsƒ, fissile№, primarily a naturally occurring radioactive material (NORM)þ, neutron poison (thermal neutron capture cross section greater than 3k barns)
  1. ^ a b c d Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. ^ a b Liang, C. F.; Paris, P.; Sheline, R. K. (2000-09-19). "α decay of 225Ra". Physical Review C. 62 (4). American Physical Society (APS): 047303. Bibcode:2000PhRvC..62d7303L. doi:10.1103/physrevc.62.047303. ISSN 0556-2813.
  3. ^ Nagel, Miriam C. (September 1982). "Frederick Soddy: From alchemy to isotopes". Journal of Chemical Education. 59 (9): 739. Bibcode:1982JChEd..59..739N. doi:10.1021/ed059p739. ISSN 0021-9584.
  4. ^ Kirby, H.W. & Salutsky, Murrell L. (December 1964). The Radiochemistry of Radium (Report). crediting UNT Libraries Government Documents Department. p. 3 – via University of North Texas, UNT Digital Library. Alternate source: https://sgp.fas.org/othergov/doe/lanl/lib-www/books/rc000041.pdf
  5. ^ Giunta, Carmen J. (2017). "ISOTOPES: IDENTIFYING THE BREAKTHROUGH PUBLICATION (1)" (PDF). Bull. Hist. Chem. 42 (2): 103–111.
  6. ^ Looney, William B. (1958). "Effects of Radium in Man". Science. 127 (3299): 630–633. Bibcode:1958Sci...127..630L. doi:10.1126/science.127.3299.630. ISSN 0036-8075. JSTOR 1755774. PMID 13529029.
  7. ^ Mitchell, S. A. "Is Radium in the Sun?". Popular Astronomy. 21: 321–331. Bibcode:1913PA.....21..321M.
  8. ^ Kuhn, W. (1929). "LXVIII. Scattering of thorium C" γ-radiation by radium G and ordinary lead". The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 8 (52): 628. doi:10.1080/14786441108564923. ISSN 1941-5982.
  9. ^ Kinsey, R. R. (December 18, 1997), "The radioactive series of radium-226" (PDF), The NUDAT/PCNUDAT Program for Nuclear Data – via CERN
  10. ^ Hills, Stephanie (8 May 2013). "First observations of short-lived pear-shaped atomic nuclei". CERN.
  11. ^ Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  12. ^ Plus radium (element 88). While actually a sub-actinide, it immediately precedes actinium (89) and follows a three-element gap of instability after polonium (84) where no nuclides have half-lives of at least four years (the longest-lived nuclide in the gap is radon-222 with a half life of less than four days). Radium's longest lived isotope, at 1,600 years, thus merits the element's inclusion here.
  13. ^ Specifically from thermal neutron fission of uranium-235, e.g. in a typical nuclear reactor.
  14. ^ Milsted, J.; Friedman, A. M.; Stevens, C. M. (1965). "The alpha half-life of berkelium-247; a new long-lived isomer of berkelium-248". Nuclear Physics. 71 (2): 299. Bibcode:1965NucPh..71..299M. doi:10.1016/0029-5582(65)90719-4.
    "The isotopic analyses disclosed a species of mass 248 in constant abundance in three samples analysed over a period of about 10 months. This was ascribed to an isomer of Bk248 with a half-life greater than 9 [years]. No growth of Cf248 was detected, and a lower limit for the β− half-life can be set at about 104 [years]. No alpha activity attributable to the new isomer has been detected; the alpha half-life is probably greater than 300 [years]."
  15. ^ This is the heaviest nuclide with a half-life of at least four years before the "sea of instability".
  16. ^ Excluding those "classically stable" nuclides with half-lives significantly in excess of 232Th; e.g., while 113mCd has a half-life of only fourteen years, that of 113Cd is eight quadrillion years.
  1. ^ Radium emanation = 222Rn, Ra A = 218Po, Ra B = 214Pb, Ra C = 214Bi, Ra C1 = 214Po, Ra C2 = 210Tl, Ra D = 210Pb, Ra E = 210Bi, Ra F = 210Po, and Ra G = 206Pb.[8][9]