Isotopes of silver (original) (raw)
From Wikipedia, the free encyclopedia
Main isotopes[1] Decay abundance half-life (_t_1/2) mode product 105Ag synth 41.3 d ε 105Pd γ – 106mAg synth 8.28 d ε 106Pd γ – 107Ag 51.8% stable 108mAg synth 439 y ε 108Pd IT 108Ag γ – 109Ag 48.2% stable 110m2Ag synth 249.86 d β− 110Cd γ – 111Ag synth 7.43 d β− 111Cd γ – |
---|
Standard atomic weight _A_r°(Ag) |
107.8682±0.0002[2]107.87±0.01 (abridged)[3] |
viewtalkedit |
Naturally occurring silver (47Ag) is composed of the two stable isotopes 107Ag and 109Ag in almost equal proportions, with 107Ag being slightly more abundant (51.839% natural abundance). Notably, silver is the only element with all stable istopes having nuclear spins of 1/2. Thus both 107Ag and 109Ag nuclei produce narrow lines in nuclear magnetic resonance spectra.[4]
40 radioisotopes have been characterized with the most stable being 105Ag with a half-life of 41.29 days, 111Ag with a half-life of 7.43 days, and 112Ag with a half-life of 3.13 hours.
All of the remaining radioactive isotopes have half-lives that are less than an hour, and the majority of these have half-lives that are less than 3 minutes. This element has numerous meta states, with the most stable being 108mAg (half-life 439 years), 110mAg (half-life 249.86 days) and 106mAg (half-life 8.28 days).
Isotopes of silver range in atomic weight from 92Ag to 132Ag. The primary decay mode before the most abundant stable isotope, 107Ag, is electron capture and the primary mode after is beta decay. The primary decay products before 107Ag are palladium (element 46) isotopes and the primary products after are cadmium (element 48) isotopes.
The palladium isotope 107Pd decays by beta emission to 107Ag with a half-life of 6.5 million years. Iron meteorites are the only objects with a high enough palladium/silver ratio to yield measurable variations in 107Ag abundance. Radiogenic 107Ag was first discovered in the Santa Clara meteorite in 1978.
The discoverers suggest that the coalescence and differentiation of iron-cored small planets may have occurred 10 million years after a nucleosynthetic event. 107Pd versus 107Ag correlations observed in bodies, which have clearly been melted since the accretion of the Solar System, must reflect the presence of live short-lived nuclides in the early Solar System.
| Nuclide[n 1] | Z | N | Isotopic mass (Da)[5][n 2][n 3] | Half-life[1][n 4] | Decay mode[1][n 5] | Daughter isotope[n 6][n 7] | Spin andparity[1][n 8][n 4] | Natural abundance (mole fraction) | | | ----------------------------------------------------------------------------------------------- | --------------------------------------------------- | ---------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------- | --------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | ---------------------------------------------------------------------------------- | | | Excitation energy[n 4] | Normal proportion[1] | Range of variation | | | | | | | | | 92Ag | 47 | 45 | 91.95971(43)# | 1# ms[>400 ns] | β+? | 92Pd | | | | | p? | 91Pd | | | | | | | | | | 93Ag | 47 | 46 | 92.95019(43)# | 228(16) ns | β+? | 93Pd | 9/2+# | | | | p? | 92Pd | | | | | | | | | | β+, p? | 92Rh | | | | | | | | | | 94Ag | 47 | 47 | 93.94374(43)# | 27(2) ms | β+ (>99.8%) | 94Pd | 0+# | | | | β+, p (<0.2%) | 93Rh | | | | | | | | | | 94m1Ag | 1350(400)# keV | 470(10) ms | β+ (83%) | 94Pd | (7+) | | | | | | β+, p (17%) | 93Rh | | | | | | | | | | 94m2Ag | 6500(550)# keV | 400(40) ms | β+ (~68.4%) | 94Pd | (21+) | | | | | | β+, p (~27%) | 93Rh | | | | | | | | | | p (4.1%) | 93Pd | | | | | | | | | | 2p (0.5%) | 92Rh | | | | | | | | | | 95Ag | 47 | 48 | 94.93569(43)# | 1.78(6) s | β+ (97.7%) | 95Pd | (9/2+) | | | | β+, p (2.3%) | 94Rh | | | | | | | | | | 95m1Ag | 344.2(3) keV | <0.5 s | IT | 95Ag | (1/2−) | | | | | | 95m2Ag | 2531.3(15) keV | <16 ms | IT | 95Ag | (23/2+) | | | | | | 95m3Ag | 4860.0(15) keV | <40 ms | IT | 95Ag | (37/2+) | | | | | | 96Ag | 47 | 49 | 95.93074(10) | 4.45(3) s | β+ (95.8%) | 96Pd | (8)+ | | | | β+, p (4.2%) | 95Rh | | | | | | | | | | 96m1Ag[n 9] | 0(50)# keV | 6.9(5) s | β+ (85.1%) | 96Pd | (2+) | | | | | | β+, p (14.9%) | 95Rh | | | | | | | | | | 96m2Ag | 2461.4(3) keV | 103.2(45) μs | IT | 96Ag | (13−) | | | | | | 96m3Ag | 2686.7(4) keV | 1.561(16) μs | IT | 96Ag | (15+) | | | | | | 96m4Ag | 6951.8(14) keV | 132(17) ns | IT | 96Ag | (19+) | | | | | | 97Ag | 47 | 50 | 96.923881(13) | 25.5(3) s | β+ | 97Pd | (9/2)+ | | | | 97mAg | 620(40) keV | 100# ms | IT? | 97Ag | 1/2−# | | | | | | 98Ag | 47 | 51 | 97.92156(4) | 47.5(3) s | β+ | 98Pd | (6)+ | | | | β+, p (.0012%) | 97Rh | | | | | | | | | | 98mAg | 107.28(10) keV | 161(7) ns | IT | 98Ag | (4+) | | | | | | 99Ag | 47 | 52 | 98.917646(7) | 2.07(5) min | β+ | 99Pd | (9/2)+ | | | | 99mAg | 506.2(4) keV | 10.5(5) s | IT | 99Ag | (1/2−) | | | | | | 100Ag | 47 | 53 | 99.916115(5) | 2.01(9) min | β+ | 100Pd | (5)+ | | | | 100mAg | 15.52(16) keV | 2.24(13) min | IT? | 100Ag | (2)+ | | | | | | β+? | 100Pd | | | | | | | | | | 101Ag | 47 | 54 | 100.912684(5) | 11.1(3) min | β+ | 101Pd | 9/2+ | | | | 101mAg | 274.1(3) keV | 3.10(10) s | IT | 101Ag | (1/2)− | | | | | | 102Ag | 47 | 55 | 101.911705(9) | 12.9(3) min | β+ | **102Pd** | 5+ | | | | 102mAg | 9.40(7) keV | 7.7(5) min | β+ (51%) | **102Pd** | 2+ | | | | | | IT (49%) | 102Ag | | | | | | | | | | 103Ag | 47 | 56 | 102.908961(4) | 65.7(7) min | β+ | 103Pd | 7/2+ | | | | 103mAg | 134.45(4) keV | 5.7(3) s | IT | 103Ag | 1/2− | | | | | | 104Ag | 47 | 57 | 103.908624(5) | 69.2(10) min | β+ | **104Pd** | 5+ | | | | 104mAg | 6.90(22) keV | 33.5(20) min | β+ (>99.93%) | 104Pd | 2+ | | | | | | IT (<0.07%) | 104Ag | | | | | | | | | | 105Ag | 47 | 58 | 104.906526(5) | 41.29(7) d | β+ | **105Pd** | 1/2− | | | | 105mAg | 25.468(16) keV | 7.23(16) min | IT (99.66%) | 105Ag | 7/2+ | | | | | | β+ (.34%) | **105Pd** | | | | | | | | | | 106Ag | 47 | 59 | 105.906663(3) | 23.96(4) min | β+ | **106Pd** | 1+ | | | | β−? | **106Cd** | | | | | | | | | | 106mAg | 89.66(7) keV | 8.28(2) d | β+ | **106Pd** | 6+ | | | | | | IT? | 106Ag | | | | | | | | | | 107Ag[n 10] | 47 | 60 | 106.9050915(26) | **Stable** | 1/2− | 0.51839(8) | | | | | 107mAg | 93.125(19) keV | 44.3(2) s | IT | **107Ag** | 7/2+ | | | | | | 108Ag[6] | 47 | 61 | 107.9059502(26) | 2.382(11) min | β− (97.15%) | **108Cd** | 1+ | | | | EC (2.57%) | **108Pd** | | | | | | | | | | β+ (0.283%) | **108Pd** | | | | | | | | | | 108mAg[6] | 109.466(7) keV | 439(9) y | EC (91.3%) | **108Pd** | 6+ | | | | | | IT (8.96%) | 108Ag | | | | | | | | | | 109Ag[n 11] | 47 | 62 | 108.9047558(14) | **Stable** | 1/2− | 0.48161(8) | | | | | 109mAg | 88.0337(10) keV | 39.79(21) s | IT | **109Ag** | 7/2+ | | | | | | 110Ag | 47 | 63 | 109.9061107(14) | 24.56(11) s | β− (99.70%) | **110Cd** | 1+ | | | | EC (0.30%) | **110Pd** | | | | | | | | | | 110m1Ag | 1.112(16) keV | 660(40) ns | IT | 110Ag | 2− | | | | | | 110m2Ag | 117.59(5) keV | 249.863(24) d | β− (98.67%) | **110Cd** | 6+ | | | | | | IT (1.33%) | 110Ag | | | | | | | | | | 111Ag[n 11] | 47 | 64 | 110.9052968(16) | 7.433(10) d | β− | **111Cd** | 1/2− | | | | 111mAg | 59.82(4) keV | 64.8(8) s | IT (99.3%) | 111Ag | 7/2+ | | | | | | β− (0.7%) | **111Cd** | | | | | | | | | | 112Ag | 47 | 65 | 111.9070485(26) | 3.130(8) h | β− | **112Cd** | 2(−) | | | | 113Ag | 47 | 66 | 112.906573(18) | 5.37(5) h | β− | 113mCd | 1/2− | | | | 113mAg | 43.50(10) keV | 68.7(16) s | IT (64%) | 113Ag | 7/2+ | | | | | | β− (36%) | _**113Cd**_ | | | | | | | | | | 114Ag | 47 | 67 | 113.908823(5) | 4.6(1) s | β− | **114Cd** | 1+ | | | | 114mAg | 198.9(10) keV | 1.50(5) ms | IT | 114Ag | (6+) | | | | | | 115Ag | 47 | 68 | 114.908767(20) | 20.0(5) min | β− | 115mCd | 1/2− | | | | 115mAg | 41.16(10) keV | 18.0(7) s | β− (79.0%) | 115Cd | 7/2+ | | | | | | IT (21.0%) | 115Ag | | | | | | | | | | 116Ag | 47 | 69 | 115.911387(4) | 3.83(8) min | β− | _**116Cd**_ | (0−) | | | | 116m1Ag | 47.90(10) keV | 20(1) s | β− (93%) | _**116Cd**_ | (3+) | | | | | | IT (7%) | 116Ag | | | | | | | | | | 116m2Ag | 129.80(22) keV | 9.3(3) s | β− (92%) | _**116Cd**_ | (6−) | | | | | | IT (8%) | 116Ag | | | | | | | | | | 117Ag | 47 | 70 | 116.911774(15) | 73.6(14) s | β− | 117mCd | 1/2−# | | | | 117mAg | 28.6(2) keV | 5.34(5) s | β− (94.0%) | 117mCd | 7/2+# | | | | | | IT (6.0%) | 117Ag | | | | | | | | | | 118Ag | 47 | 71 | 117.9145955(27) | 3.76(15) s | β− | 118Cd | (2−) | | | | 118m1Ag | 45.79(9) keV | ~0.1 μs | IT | 118Ag | (1,2)− | | | | | | 118m2Ag | 127.63(10) keV | 2.0(2) s | β− (59%) | 118Cd | (5+) | | | | | | IT (41%) | 118Ag | | | | | | | | | | 118m3Ag | 279.37(20) keV | ~0.1 μs | IT | 118Ag | (3+) | | | | | | 119Ag | 47 | 72 | 118.915570(16) | 2.1(1) s | β− | 119Cd | (7/2+) | | | | 119mAg | 33.5(3) keV[7] | 6.0(5) s | β− | 119Cd | (1/2−) | | | | | | 120Ag | 47 | 73 | 119.918785(5) | 1.52(7) s | β− | 120Cd | 4(+) | | | | β−, n (<.003%) | 119Cd | | | | | | | | | | 120m1Ag[n 9] | 0(50)# keV | 940(100) ms | β−? | 120Cd | (0−, 1−) | | | | | | IT? | 120Ag | | | | | | | | | | β−, n? | 119Cd | | | | | | | | | | 120m2Ag | 203.2(2) keV | 384(22) ms | IT (68%) | 120Sn | 7(−) | | | | | | β− (32%) | 120Cd | | | | | | | | | | β−, n? | 119Cd | | | | | | | | | | 121Ag | 47 | 74 | 120.920125(13) | 777(10) ms | β− (99.92%) | 121Cd | 7/2+# | | | | β−, n (0.080%) | 120Cd | | | | | | | | | | 122Ag[8] | 47 | 75 | 121.9235420(56) | 550(50) ms | β− | 122Cd | (1−) | | | | β−, n? | 121Cd | | | | | | | | | | 122m1Ag[8] | 303.7(50) keV | 200(50) ms | β− | 122Cd | (9−) | | | | | | β−, n? | 121Cd | | | | | | | | | | IT? | 122Ag | | | | | | | | | | 122m2Ag | 171(50)# keV | 6.3(1) μs | IT | 122Ag | (1+) | | | | | | 123Ag | 47 | 76 | 122.92532(4) | 294(5) ms | β− (99.44%) | 123Cd | (7/2+) | | | | β−, n (0.56%) | 122Cd | | | | | | | | | | 123m1Ag | 59.5(5) keV | 100# ms | β− | 123Cd | (1/2−) | | | | | | β−, n? | 122Cd | | | | | | | | | | 123m2Ag | 1450(14)# keV | 202(20) ns | IT | 123Ag | | | | | | | 123m3Ag | 1472.8(8) keV | 393(16) ns | IT | 123Ag | (17/2−) | | | | | | 124Ag | 47 | 77 | 123.92890(27)# | 177.9(26) ms | β− (98.7%) | 124Cd | (2−) | | | | β−, n (1.3%) | 123Cd | | | | | | | | | | 124m1Ag[n 9] | 50(50)# keV | 144(20) ms | β− | 124Cd | 9−# | | | | | | β−, n? | 123Cd | | | | | | | | | | 124m2Ag | 155.6(5) keV | 140(50) ns | IT | 124Ag | (1+) | | | | | | 124m3Ag | 231.1(7) keV | 1.48(15) μs | IT | 124Ag | (1−) | | | | | | 125Ag | 47 | 78 | 124.93074(47) | 160(5) ms | β− (88.2%) | 125Cd | (9/2+) | | | | β−, n (11.8%) | 124Cd | | | | | | | | | | 125m1Ag | 97.1(5) keV | 50# ms | β−? | 125Cd | (1/2−) | | | | | | IT? | 125Ag | | | | | | | | | | β−, n? | 124Cd | | | | | | | | | | 125m2Ag | 1501.2(6) keV | 491(20) ns | IT | 125Ag | (17/2−) | | | | | | 126Ag | 47 | 79 | 125.93481(22)# | 52(10) ms | β− (86.3%) | 126Cd | 3+# | | | | β−, n (13.7%) | 125Cd | | | | | | | | | | 126m1Ag | 100(100)# keV | 108.4(24) ms | β− | 126Cd | 9−# | | | | | | IT? | 126Ag | | | | | | | | | | β−, n? | 125Cd | | | | | | | | | | 126m2Ag | 254.8(5) keV | 27(6) μs | IT | 126Ag | 1−# | | | | | | 127Ag | 47 | 80 | 126.93704(22)# | 89(2) ms | β− (85.4%) | 127Cd | (9/2+) | | | | β−, n (14.6%) | 126Cd | | | | | | | | | | 127mAg | 1938(17) keV | 67.5(9) ms | β− (91.2%) | 127Cd | (27/2+) | | | | | | IT (8.8%) | 127Ag | | | | | | | | | | 128Ag | 47 | 81 | 127.94127(32)# | 60(3) ms | β− (80%) | 128Cd | 3+# | | | | β−, n (20%) | 127Cd | | | | | | | | | | β−, 2n? | 126Cd | | | | | | | | | | 129Ag | 47 | 82 | 128.94432(43)# | 49.9(35) ms | β− (>80%) | 129Cd | 9/2+# | | | | β−, n (<20%) | 128Cd | | | | | | | | | | 130Ag | 47 | 83 | 129.95073(46)# | 40.6(45) ms | β− | 130Cd | 1−# | | | | β−, n? | 129Cd | | | | | | | | | | β−, 2n? | 128Cd | | | | | | | | | | 131Ag | 47 | 84 | 130.95625(54)# | 35(8) ms | β− (90%) | 131Cd | 9/2+# | | | | β−, 2n (10%) | 129Cd | | | | | | | | | | β−, n? | 130Cd | | | | | | | | | | 132Ag | 47 | 85 | 131.96307(54)# | 30(14) ms | β− | 132Cd | 6−# | | | | β−, n? | 131Cd | | | | | | | | | | β−, 2n? | 130Cd | | | | | | | | | | This table header & footer: view | | | | | | | | | |
^ mAg – Excited nuclear isomer.
^ ( ) – Uncertainty (1_σ_) is given in concise form in parentheses after the corresponding last digits.
^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
^ a b c # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
^ Modes of decay:
^ Bold italics symbol as daughter – Daughter product is nearly stable.
^ Bold symbol as daughter – Daughter product is stable.
^ ( ) spin value – Indicates spin with weak assignment arguments.
^ Used to date certain events in the early history of the Solar System
^ a b c d e Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
^ "Standard Atomic Weights: Silver". CIAAW. 1985.
^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
^ Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
^ a b Blachot, Jean (October 2000). "Nuclear Data Sheets for A = 108". Nuclear Data Sheets. 91 (2): 135–296. doi:10.1006/ndsh.2000.0017.
^ Kurpeta, J.; Abramuk, A.; Rząca-Urban, T.; Urban, W.; Canete, L.; Eronen, T.; Geldhof, S.; Gierlik, M.; Greene, J. P.; Jokinen, A.; Kankainen, A.; Moore, I. D.; Nesterenko, D. A.; Penttilä, H.; Pohjalainen, I.; Reponen, M.; Rinta-Antila, S.; de Roubin, A.; Simpson, G. S.; Smith, A. G.; Vilén, M. (14 March 2022). "β - and γ -spectroscopy study of Pd 119 and Ag 119". Physical Review C. 105 (3). doi:10.1103/PhysRevC.105.034316.
^ a b Jaries, A.; Stryjczyk, M.; Kankainen, A.; Ayoubi, L. Al; Beliuskina, O.; Canete, L.; de Groote, R. P.; Delafosse, C.; Delahaye, P.; Eronen, T.; Flayol, M.; Ge, Z.; Geldhof, S.; Gins, W.; Hukkanen, M.; Imgram, P.; Kahl, D.; Kostensalo, J.; Kujanpää, S.; Kumar, D.; Moore, I. D.; Mougeot, M.; Nesterenko, D. A.; Nikas, S.; Patel, D.; Penttilä, H.; Pitman-Weymouth, D.; Pohjalainen, I.; Raggio, A.; Ramalho, M.; Reponen, M.; Rinta-Antila, S.; de Roubin, A.; Ruotsalainen, J.; Srivastava, P. C.; Suhonen, J.; Vilen, M.; Virtanen, V.; Zadvornaya, A. "Physical Review C - Accepted Paper: Isomeric states of fission fragments explored via Penning trap mass spectrometry at IGISOL". journals.aps.org. arXiv:2403.04710.
- Isotope masses from:
- Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
- Isotopic compositions and standard atomic masses from:
- Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
- de Laeter, John Robert; Böhlke, John Karl; De Bièvre, Paul; Hidaka, Hiroshi; Peiser, H. Steffen; Rosman, Kevin J. R.; Taylor, Philip D. P. (2003). "Atomic weights of the elements. Review 2000 (IUPAC Technical Report)". Pure and Applied Chemistry. 75 (6): 683–800. doi:10.1351/pac200375060683.
- Wieser, Michael E. (2006). "Atomic weights of the elements 2005 (IUPAC Technical Report)". Pure and Applied Chemistry. 78 (11): 2051–2066. doi:10.1351/pac200678112051.
- "News & Notices: Standard Atomic Weights Revised". International Union of Pure and Applied Chemistry. 19 October 2005.
- Half-life, spin, and isomer data selected from the following sources.
- Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
- National Nuclear Data Center. "NuDat 2.x database". Brookhaven National Laboratory.
- Holden, Norman E. (2004). "11. Table of the Isotopes". In Lide, David R. (ed.). CRC Handbook of Chemistry and Physics (85th ed.). Boca Raton, Florida: CRC Press. ISBN 978-0-8493-0485-9.