Lebesgue point (original) (raw)

From Wikipedia, the free encyclopedia

In mathematics, given a locally Lebesgue integrable function f {\displaystyle f} {\displaystyle f} on R k {\displaystyle \mathbb {R} ^{k}} {\displaystyle \mathbb {R} ^{k}}, a point x {\displaystyle x} {\displaystyle x} in the domain of f {\displaystyle f} {\displaystyle f} is a Lebesgue point if[1]

lim r → 0 + 1 λ ( B ( x , r ) ) ∫ B ( x , r ) | f ( y ) − f ( x ) | d y = 0. {\displaystyle \lim _{r\rightarrow 0^{+}}{\frac {1}{\lambda (B(x,r))}}\int _{B(x,r)}\!|f(y)-f(x)|\,\mathrm {d} y=0.} {\displaystyle \lim _{r\rightarrow 0^{+}}{\frac {1}{\lambda (B(x,r))}}\int _{B(x,r)}\!|f(y)-f(x)|\,\mathrm {d} y=0.}

Here, B ( x , r ) {\displaystyle B(x,r)} {\displaystyle B(x,r)} is a ball centered at x {\displaystyle x} {\displaystyle x} with radius r > 0 {\displaystyle r>0} {\displaystyle r>0}, and λ ( B ( x , r ) ) {\displaystyle \lambda (B(x,r))} {\displaystyle \lambda (B(x,r))} is its Lebesgue measure. The Lebesgue points of f {\displaystyle f} {\displaystyle f} are thus points where f {\displaystyle f} {\displaystyle f} does not oscillate too much, in an average sense.[2]

The Lebesgue differentiation theorem states that, given any f ∈ L 1 ( R k ) {\displaystyle f\in L^{1}(\mathbb {R} ^{k})} {\displaystyle f\in L^{1}(\mathbb {R} ^{k})}, almost every x {\displaystyle x} {\displaystyle x} is a Lebesgue point of f {\displaystyle f} {\displaystyle f}.[3]

  1. ^ Bogachev, Vladimir I. (2007), Measure Theory, Volume 1, Springer, p. 351, ISBN 9783540345145.
  2. ^ Martio, Olli; Ryazanov, Vladimir; Srebro, Uri; Yakubov, Eduard (2008), Moduli in Modern Mapping Theory, Springer Monographs in Mathematics, Springer, p. 105, ISBN 9780387855882.
  3. ^ Giaquinta, Mariano; Modica, Giuseppe (2010), Mathematical Analysis: An Introduction to Functions of Several Variables, Springer, p. 80, ISBN 9780817646127.