Logarithmic integral function (original) (raw)

From Wikipedia, the free encyclopedia

Special function defined by an integral

"Li(x)" redirects here. For the polylogarithm denoted by Li_s_(z), see Polylogarithm.

Plot of the logarithmic integral function li(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D

Plot of the logarithmic integral function li(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D

In mathematics, the logarithmic integral function or integral logarithm li(x) is a special function. It is relevant in problems of physics and has number theoretic significance. In particular, according to the prime number theorem, it is a very good approximation to the prime-counting function, which is defined as the number of prime numbers less than or equal to a given value x.

Logarithmic integral function plot

Integral representation

[edit]

The logarithmic integral has an integral representation defined for all positive real numbers x ≠ 1 by the definite integral

li ⁡ ( x ) = ∫ 0 x d t ln ⁡ t . {\displaystyle \operatorname {li} (x)=\int _{0}^{x}{\frac {dt}{\ln t}}.} {\displaystyle \operatorname {li} (x)=\int _{0}^{x}{\frac {dt}{\ln t}}.}

Here, ln denotes the natural logarithm. The function 1/(ln t) has a singularity at t = 1, and the integral for x > 1 is interpreted as a Cauchy principal value,

li ⁡ ( x ) = lim ε → 0 + ( ∫ 0 1 − ε d t ln ⁡ t + ∫ 1 + ε x d t ln ⁡ t ) . {\displaystyle \operatorname {li} (x)=\lim _{\varepsilon \to 0+}\left(\int _{0}^{1-\varepsilon }{\frac {dt}{\ln t}}+\int _{1+\varepsilon }^{x}{\frac {dt}{\ln t}}\right).} {\displaystyle \operatorname {li} (x)=\lim _{\varepsilon \to 0+}\left(\int _{0}^{1-\varepsilon }{\frac {dt}{\ln t}}+\int _{1+\varepsilon }^{x}{\frac {dt}{\ln t}}\right).}

Offset logarithmic integral

[edit]

The offset logarithmic integral or Eulerian logarithmic integral is defined as

Li ⁡ ( x ) = ∫ 2 x d t ln ⁡ t = li ⁡ ( x ) − li ⁡ ( 2 ) . {\displaystyle \operatorname {Li} (x)=\int _{2}^{x}{\frac {dt}{\ln t}}=\operatorname {li} (x)-\operatorname {li} (2).} {\displaystyle \operatorname {Li} (x)=\int _{2}^{x}{\frac {dt}{\ln t}}=\operatorname {li} (x)-\operatorname {li} (2).}

As such, the integral representation has the advantage of avoiding the singularity in the domain of integration.

Equivalently,

li ⁡ ( x ) = ∫ 0 x d t ln ⁡ t = Li ⁡ ( x ) + li ⁡ ( 2 ) . {\displaystyle \operatorname {li} (x)=\int _{0}^{x}{\frac {dt}{\ln t}}=\operatorname {Li} (x)+\operatorname {li} (2).} {\displaystyle \operatorname {li} (x)=\int _{0}^{x}{\frac {dt}{\ln t}}=\operatorname {Li} (x)+\operatorname {li} (2).}

The function li(x) has a single positive zero; it occurs at x ≈ 1.45136 92348 83381 05028 39684 85892 02744 94930... OEIS: A070769; this number is known as the Ramanujan–Soldner constant.

li ⁡ ( Li − 1 ( 0 ) ) = li ( 2 ) {\displaystyle \operatorname {li} ({\text{Li}}^{-1}(0))={\text{li}}(2)} {\displaystyle \operatorname {li} ({\text{Li}}^{-1}(0))={\text{li}}(2)} ≈ 1.045163 780117 492784 844588 889194 613136 522615 578151... OEIS: A069284

This is − ( Γ ( 0 , − ln ⁡ 2 ) + i π ) {\displaystyle -(\Gamma (0,-\ln 2)+i\,\pi )} {\displaystyle -(\Gamma (0,-\ln 2)+i\,\pi )} where Γ ( a , x ) {\displaystyle \Gamma (a,x)} {\displaystyle \Gamma (a,x)} is the incomplete gamma function. It must be understood as the Cauchy principal value of the function.

Series representation

[edit]

The function li(x) is related to the exponential integral Ei(x) via the equation

li ⁡ ( x ) = Ei ( ln ⁡ x ) , {\displaystyle \operatorname {li} (x)={\hbox{Ei}}(\ln x),} {\displaystyle \operatorname {li} (x)={\hbox{Ei}}(\ln x),}

which is valid for x > 0. This identity provides a series representation of li(x) as

li ⁡ ( e u ) = Ei ( u ) = γ + ln ⁡ | u | + ∑ n = 1 ∞ u n n ⋅ n ! for u ≠ 0 , {\displaystyle \operatorname {li} (e^{u})={\hbox{Ei}}(u)=\gamma +\ln |u|+\sum _{n=1}^{\infty }{u^{n} \over n\cdot n!}\quad {\text{ for }}u\neq 0\,,} {\displaystyle \operatorname {li} (e^{u})={\hbox{Ei}}(u)=\gamma +\ln |u|+\sum _{n=1}^{\infty }{u^{n} \over n\cdot n!}\quad {\text{ for }}u\neq 0\,,}

where γ ≈ 0.57721 56649 01532 ... OEIS: A001620 is the Euler–Mascheroni constant. A more rapidly convergent series by Ramanujan [1] is

li ⁡ ( x ) = γ + ln ⁡ | ln ⁡ x | + x ∑ n = 1 ∞ ( ( − 1 ) n − 1 ( ln ⁡ x ) n n ! 2 n − 1 ∑ k = 0 ⌊ ( n − 1 ) / 2 ⌋ 1 2 k + 1 ) . {\displaystyle \operatorname {li} (x)=\gamma +\ln |\ln x|+{\sqrt {x}}\sum _{n=1}^{\infty }\left({\frac {(-1)^{n-1}(\ln x)^{n}}{n!\,2^{n-1}}}\sum _{k=0}^{\lfloor (n-1)/2\rfloor }{\frac {1}{2k+1}}\right).} {\displaystyle \operatorname {li} (x)=\gamma +\ln |\ln x|+{\sqrt {x}}\sum _{n=1}^{\infty }\left({\frac {(-1)^{n-1}(\ln x)^{n}}{n!\,2^{n-1}}}\sum _{k=0}^{\lfloor (n-1)/2\rfloor }{\frac {1}{2k+1}}\right).}

Asymptotic expansion

[edit]

The asymptotic behavior for x → ∞ {\displaystyle x\to \infty } {\displaystyle x\to \infty } is

li ⁡ ( x ) = O ( x ln ⁡ x ) . {\displaystyle \operatorname {li} (x)=O\left({\frac {x}{\ln x}}\right).} {\displaystyle \operatorname {li} (x)=O\left({\frac {x}{\ln x}}\right).}

where O {\displaystyle O} {\displaystyle O} is the big O notation. The full asymptotic expansion is

li ⁡ ( x ) ∼ x ln ⁡ x ∑ k = 0 ∞ k ! ( ln ⁡ x ) k {\displaystyle \operatorname {li} (x)\sim {\frac {x}{\ln x}}\sum _{k=0}^{\infty }{\frac {k!}{(\ln x)^{k}}}} {\displaystyle \operatorname {li} (x)\sim {\frac {x}{\ln x}}\sum _{k=0}^{\infty }{\frac {k!}{(\ln x)^{k}}}}

or

li ⁡ ( x ) x / ln ⁡ x ∼ 1 + 1 ln ⁡ x + 2 ( ln ⁡ x ) 2 + 6 ( ln ⁡ x ) 3 + ⋯ . {\displaystyle {\frac {\operatorname {li} (x)}{x/\ln x}}\sim 1+{\frac {1}{\ln x}}+{\frac {2}{(\ln x)^{2}}}+{\frac {6}{(\ln x)^{3}}}+\cdots .} {\displaystyle {\frac {\operatorname {li} (x)}{x/\ln x}}\sim 1+{\frac {1}{\ln x}}+{\frac {2}{(\ln x)^{2}}}+{\frac {6}{(\ln x)^{3}}}+\cdots .}

This gives the following more accurate asymptotic behaviour:

li ⁡ ( x ) − x ln ⁡ x = O ( x ( ln ⁡ x ) 2 ) . {\displaystyle \operatorname {li} (x)-{\frac {x}{\ln x}}=O\left({\frac {x}{(\ln x)^{2}}}\right).} {\displaystyle \operatorname {li} (x)-{\frac {x}{\ln x}}=O\left({\frac {x}{(\ln x)^{2}}}\right).}

As an asymptotic expansion, this series is not convergent: it is a reasonable approximation only if the series is truncated at a finite number of terms, and only large values of x are employed. This expansion follows directly from the asymptotic expansion for the exponential integral.

This implies e.g. that we can bracket li as:

1 + 1 ln ⁡ x < li ⁡ ( x ) ln ⁡ x x < 1 + 1 ln ⁡ x + 3 ( ln ⁡ x ) 2 {\displaystyle 1+{\frac {1}{\ln x}}<\operatorname {li} (x){\frac {\ln x}{x}}<1+{\frac {1}{\ln x}}+{\frac {3}{(\ln x)^{2}}}} {\displaystyle 1+{\frac {1}{\ln x}}<\operatorname {li} (x){\frac {\ln x}{x}}<1+{\frac {1}{\ln x}}+{\frac {3}{(\ln x)^{2}}}}

for all ln ⁡ x ≥ 11 {\displaystyle \ln x\geq 11} {\displaystyle \ln x\geq 11}.

Number theoretic significance

[edit]

The logarithmic integral is important in number theory, appearing in estimates of the number of prime numbers less than a given value. For example, the prime number theorem states that:

π ( x ) ∼ li ⁡ ( x ) {\displaystyle \pi (x)\sim \operatorname {li} (x)} {\displaystyle \pi (x)\sim \operatorname {li} (x)}

where π ( x ) {\displaystyle \pi (x)} {\displaystyle \pi (x)} denotes the number of primes smaller than or equal to x {\displaystyle x} {\displaystyle x}.

Assuming the Riemann hypothesis, we get the even stronger:[2]

| li ⁡ ( x ) − π ( x ) | = O ( x log ⁡ x ) {\displaystyle |\operatorname {li} (x)-\pi (x)|=O({\sqrt {x}}\log x)} {\displaystyle |\operatorname {li} (x)-\pi (x)|=O({\sqrt {x}}\log x)}

In fact, the Riemann hypothesis is equivalent to the statement that:

| li ⁡ ( x ) − π ( x ) | = O ( x 1 / 2 + a ) {\displaystyle |\operatorname {li} (x)-\pi (x)|=O(x^{1/2+a})} {\displaystyle |\operatorname {li} (x)-\pi (x)|=O(x^{1/2+a})} for any a > 0 {\displaystyle a>0} {\displaystyle a>0}.

For small x {\displaystyle x} {\displaystyle x}, li ⁡ ( x ) > π ( x ) {\displaystyle \operatorname {li} (x)>\pi (x)} {\displaystyle \operatorname {li} (x)>\pi (x)} but the difference changes sign an infinite number of times as x {\displaystyle x} {\displaystyle x} increases, and the first time that this happens is somewhere between 1019 and 1.4×10316.

  1. ^ Weisstein, Eric W. "Logarithmic Integral". MathWorld.
  2. ^ Abramowitz and Stegun, p. 230, 5.1.20