Matrix gamma distribution (original) (raw)
From Wikipedia, the free encyclopedia
Generalization of gamma distribution
Matrix gamma | ||||||
---|---|---|---|---|---|---|
Notation | M G p ( α , β , Σ ) {\displaystyle {\rm {MG}}_{p}(\alpha ,\beta ,{\boldsymbol {\Sigma }})} |
|||||
Parameters | α > p − 1 2 {\displaystyle \alpha >{\frac {p-1}{2}}} |
|||||
Support | X {\displaystyle \mathbf {X} } |
|||||
| Σ | − α β p α Γ p ( α ) | X | α − p + 1 2 exp ( t r ( − 1 β Σ − 1 X ) ) {\displaystyle {\frac { | {\boldsymbol {\Sigma }} | ^{-\alpha }}{\beta ^{p\alpha }\,\Gamma _{p}(\alpha )}} |
In statistics, a matrix gamma distribution is a generalization of the gamma distribution to positive-definite matrices.[1] It is effectively a different parametrization of the Wishart distribution, and is used similarly, e.g. as the conjugate prior of the precision matrix of a multivariate normal distribution and matrix normal distribution. The compound distribution resulting from compounding a matrix normal with a matrix gamma prior over the precision matrix is a generalized matrix t-distribution.[1]
A matrix gamma distributions is identical to a Wishart distribution with β Σ = 2 V , α = n 2 . {\displaystyle \beta {\boldsymbol {\Sigma }}=2V,\alpha ={\frac {n}{2}}.}
Notice that the parameters β {\displaystyle \beta } and Σ {\displaystyle {\boldsymbol {\Sigma }}}
are not identified; the density depends on these two parameters through the product β Σ {\displaystyle \beta {\boldsymbol {\Sigma }}}
.
- inverse matrix gamma distribution.
- matrix normal distribution.
- matrix t-distribution.
- Wishart distribution.
- ^ a b Iranmanesh, Anis, M. Arashib and S. M. M. Tabatabaey (2010). "On Conditional Applications of Matrix Variate Normal Distribution". Iranian Journal of Mathematical Sciences and Informatics, 5:2, pp. 33–43.
- Gupta, A. K.; Nagar, D. K. (1999) Matrix Variate Distributions, Chapman and Hall/CRC ISBN 978-1584880462