Next-generation matrix (original) (raw)
From Wikipedia, the free encyclopedia
In epidemiology, the next-generation matrix is used to derive the basic reproduction number, for a compartmental model of the spread of infectious diseases. In population dynamics it is used to compute the basic reproduction number for structured population models.[1] It is also used in multi-type branching models for analogous computations.[2]
The method to compute the basic reproduction ratio using the next-generation matrix is given by Diekmann et al. (1990)[3] and van den Driessche and Watmough (2002).[4] To calculate the basic reproduction number by using a next-generation matrix, the whole population is divided into n {\displaystyle n} compartments in which there are m < n {\displaystyle m<n}
infected compartments. Let x i , i = 1 , 2 , 3 , … , m {\displaystyle x_{i},i=1,2,3,\ldots ,m}
be the numbers of infected individuals in the i t h {\displaystyle i^{th}}
infected compartment at time t. Now, the epidemic model is[_citation needed_]
d x i d t = F i ( x ) − V i ( x ) {\displaystyle {\frac {\mathrm {d} x_{i}}{\mathrm {d} t}}=F_{i}(x)-V_{i}(x)} , where V i ( x ) = [ V i − ( x ) − V i + ( x ) ] {\displaystyle V_{i}(x)=[V_{i}^{-}(x)-V_{i}^{+}(x)]}
In the above equations, F i ( x ) {\displaystyle F_{i}(x)} represents the rate of appearance of new infections in compartment i {\displaystyle i}
. V i + {\displaystyle V_{i}^{+}}
represents the rate of transfer of individuals into compartment i {\displaystyle i}
by all other means, and V i − ( x ) {\displaystyle V_{i}^{-}(x)}
represents the rate of transfer of individuals out of compartment i {\displaystyle i}
. The above model can also be written as
d x d t = F ( x ) − V ( x ) {\displaystyle {\frac {\mathrm {d} x}{\mathrm {d} t}}=F(x)-V(x)}
where
F ( x ) = ( F 1 ( x ) , F 2 ( x ) , … , F m ( x ) ) T {\displaystyle F(x)={\begin{pmatrix}F_{1}(x),&F_{2}(x),&\ldots ,&F_{m}(x)\end{pmatrix}}^{T}}
and
V ( x ) = ( V 1 ( x ) , V 2 ( x ) , … , V m ( x ) ) T . {\displaystyle V(x)={\begin{pmatrix}V_{1}(x),&V_{2}(x),&\ldots ,&V_{m}(x)\end{pmatrix}}^{T}.}
Let x 0 {\displaystyle x_{0}} be the disease-free equilibrium. The values of the parts of the Jacobian matrix F ( x ) {\displaystyle F(x)}
and V ( x ) {\displaystyle V(x)}
are:
D F ( x 0 ) = ( F 0 0 0 ) {\displaystyle DF(x_{0})={\begin{pmatrix}F&0\\0&0\end{pmatrix}}}
and
D V ( x 0 ) = ( V 0 J 3 J 4 ) {\displaystyle DV(x_{0})={\begin{pmatrix}V&0\\J_{3}&J_{4}\end{pmatrix}}}
respectively.
Here, F {\displaystyle F} and V {\displaystyle V}
are m × m matrices, defined as F = ∂ F i ∂ x j ( x 0 ) {\displaystyle F={\frac {\partial F_{i}}{\partial x_{j}}}(x_{0})}
and V = ∂ V i ∂ x j ( x 0 ) {\displaystyle V={\frac {\partial V_{i}}{\partial x_{j}}}(x_{0})}
.
Now, the matrix F V − 1 {\displaystyle FV^{-1}} is known as the next-generation matrix. The basic reproduction number of the model is then given by the eigenvalue of F V − 1 {\displaystyle FV^{-1}}
with the largest absolute value (the spectral radius of F V − 1 {\displaystyle FV^{-1}}
). Next generation matrices can be computationally evaluated from observational data, which is often the most productive approach where there are large numbers of compartments.[5]
- ^ Zhao, Xiao-Qiang (2017), "The Theory of Basic Reproduction Ratios", Dynamical Systems in Population Biology, CMS Books in Mathematics, Springer International Publishing, pp. 285–315, doi:10.1007/978-3-319-56433-3_11, ISBN 978-3-319-56432-6
- ^ Mode, Charles J., 1927- (1971). Multitype branching processes; theory and applications. New York: American Elsevier Pub. Co. ISBN 0-444-00086-0. OCLC 120182.
{{[cite book](/wiki/Template:Cite%5Fbook "Template:Cite book")}}
: CS1 maint: multiple names: authors list (link) CS1 maint: numeric names: authors list (link) - ^ Diekmann, O.; Heesterbeek, J. A. P.; Metz, J. A. J. (1990). "On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations". Journal of Mathematical Biology. 28 (4): 365–382. doi:10.1007/BF00178324. hdl:1874/8051. PMID 2117040. S2CID 22275430.
- ^ van den Driessche, P.; Watmough, J. (2002). "Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission". Mathematical Biosciences. 180 (1–2): 29–48. doi:10.1016/S0025-5564(02)00108-6. PMID 12387915. S2CID 17313221.
- ^ von Csefalvay, Chris (2023), "Simple compartmental models", Computational Modeling of Infectious Disease, Elsevier, pp. 19–91, doi:10.1016/b978-0-32-395389-4.00011-6, ISBN 978-0-323-95389-4, retrieved 2023-02-28
- Ma, Zhien; Li, Jia (2009). Dynamical Modeling and analysis of Epidemics. World Scientific. ISBN 978-981-279-749-0. OCLC 225820441.
- Diekmann, O.; Heesterbeek, J. A. P. (2000). Mathematical Epidemiology of Infectious Disease. John Wiley & Son.
- Heffernan, J. M.; Smith, R. J.; Wahl, L. M. (2005). "Perspectives on the basic reproductive ratio". J. R. Soc. Interface. 2 (4): 281–93. doi:10.1098/rsif.2005.0042. PMC 1578275. PMID 16849186.