Pendrin (original) (raw)
From Wikipedia, the free encyclopedia
Anion exchange protein
Pendrin is an anion exchange protein that in humans is encoded by the SLC26A4 gene (solute carrier family 26, member 4).[5][6]Pendrin was initially identified as a sodium-independent chloride-iodide exchanger[7] with subsequent studies showing that it also accepts formate and bicarbonate as substrates.[8][9] Pendrin is similar to the Band 3 transport protein found in red blood cells. Pendrin is the protein which is mutated in Pendred syndrome, which is an autosomal recessive disorder characterized by sensorineural hearing loss, goiter and a partial organification problem detectable by a positive perchlorate test.[10]
Pendrin is responsible for mediating the electroneutral exchange of chloride (Cl−) for bicarbonate (HCO3−) across a plasma membrane in the chloride cells of freshwater fish.
By phylogenetic analysis, pendrin has been found to be a close relative of prestin present on the hair cells or organ of corti in the inner ear. Prestin is primarily an electromechanical transducer but pendrin is an ion transporter.
Pendrin is an ion exchanger found in many types of cells in the body. High levels of pendrin expression have been identified in the inner ear and thyroid.[11]
Thyroid hormone synthesis, with Pendrin seen at center between the follicular colloid and the follicular cell.
In the thyroid, pendrin is expressed by thyroid follicular cells. Na+/I− symporter imports iodide (I-) into the cell across its basolateral side, and pendrin extrudes the I− across the cell's apical membrane into the thyroid colloid.[12]
The exact function of pendrin in the inner ear remains unclear; however, pendrin may play a role in acid-base balance as a chloride-bicarbonate exchanger, regulate volume homeostasis through its ability to function as a chloride-formate exchanger[13][14] or indirectly modulate the calcium concentration of the endolymph.[15] Pendrin is also expressed in the kidney, and has been localized to the apical membrane of a population of intercalated cells in the cortical collecting duct where it is involved in bicarbonate secretion.[16][17]
Renal β-intercalated cells of the late distal tube and collecting duct express pendrin upon their apical membrane, resorbing one Cl_−_ in exchange for secreting a HCO3−, with Cl− subsequently extruded from the cell by a basolateral Cl− channel. β-intercalated cells thus utilise pendrin to contribute to acid-base homeostasis by excreting base (HCO3−) into urine. Additionally, β-intercalated cells may use pendrin in concert with a Na+/HCO3−/2Cl− antiporter in order to resorb NaCl.[18]
Clinical significance
[edit]
Mutations in this gene are associated with Pendred syndrome, the most common form of syndromic deafness, an autosomal-recessive disease. Pendred syndrome is characterized by thyroid goiter and enlargement of the vestibular aqueduct resulting in deafness; however, despite being expressed in the kidney, individuals with Pendred syndrome do not show any kidney-related acid-base, or volume abnormalities under basal conditions. This is probably the result of other bicarbonate or chloride transporters in the kidney compensating for any loss of pendrin function. Only under extreme situations of salt depletion or metabolic alkalosis, or with inactivation of the sodium-chloride cotransporter, are fluid and electrolyte disorders manifested in these patients.[19] SLC26A4 is highly homologous to the SLC26A3 gene; they have similar genomic structures and this gene is located 3' of the SLC26A3 gene. The encoded protein has homology to sulfate transporters.[5]
Another little-understood role of pendrin is in airway hyperreactivity and inflammation, as during asthma attacks and allergic reactions. Expression of pendrin in the lung increases in response to allergens and high concentrations of IL-13,[20][21] and overexpression of pendrin results in airway inflammation, hyperreactivity, and increased mucus production.[22][23] These symptoms could result from pendrin's effects on ion concentration in the airway surface liquid, possibly causing the liquid to be less hydrated.[24]
- ^ a b c GRCh38: Ensembl release 89: ENSG00000091137 – Ensembl, May 2017
- ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000020651 – Ensembl, May 2017
- ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
- ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
- ^ a b "Entrez Gene: SLC26A4 solute carrier family 26, member 4".
- ^ Everett LA, Glaser B, Beck JC, Idol JR, Buchs A, Heyman M, et al. (December 1997). "Pendred syndrome is caused by mutations in a putative sulphate transporter gene (PDS)". Nature Genetics. 17 (4): 411–422. doi:10.1038/ng1297-411. PMID 9398842. S2CID 39359838.
- ^ Scott DA, Wang R, Kreman TM, Sheffield VC, Karniski LP (April 1999). "The Pendred syndrome gene encodes a chloride-iodide transport protein". Nature Genetics. 21 (4): 440–443. doi:10.1038/7783. PMID 10192399. S2CID 23717390.
- ^ Scott DA, Karniski LP (January 2000). "Human pendrin expressed in Xenopus laevis oocytes mediates chloride/formate exchange". American Journal of Physiology. Cell Physiology. 278 (1): C207–C211. doi:10.1152/ajpcell.2000.278.1.c207. PMID 10644529. S2CID 18841371.
- ^ Soleimani M, Greeley T, Petrovic S, Wang Z, Amlal H, Kopp P, et al. (February 2001). "Pendrin: an apical Cl-/OH-/HCO3- exchanger in the kidney cortex". American Journal of Physiology. Renal Physiology. 280 (2): F356–F364. doi:10.1152/ajprenal.2001.280.2.f356. PMID 11208611.
- ^ Patterson C, Runge MS (2006). Principles of molecular medicine. Totowa, NJ: Humana Press. p. 957. ISBN 1-58829-202-9.
- ^ Bizhanova A, Kopp P (2011-01-01). "Controversies concerning the role of pendrin as an apical iodide transporter in thyroid follicular cells". Cellular Physiology and Biochemistry. 28 (3): 485–490. doi:10.1159/000335103. PMID 22116361.
- ^ Kessler J, Obinger C, Eales G (July 2008). "Factors influencing the study of peroxidase-generated iodine species and implications for thyroglobulin synthesis". Thyroid. 18 (7): 769–774. doi:10.1089/thy.2007.0310. PMID 18631006.
- ^ Karniski LP, Aronson PS (September 1985). "Chloride/formate exchange with formic acid recycling: a mechanism of active chloride transport across epithelial membranes". Proceedings of the National Academy of Sciences of the United States of America. 82 (18): 6362–6365. Bibcode:1985PNAS...82.6362K. doi:10.1073/pnas.82.18.6362. PMC 391054. PMID 3862136.
- ^ Kim HM, Wangemann P (November 2010). "Failure of fluid absorption in the endolymphatic sac initiates cochlear enlargement that leads to deafness in mice lacking pendrin expression". PLOS ONE. 5 (11): e14041. Bibcode:2010PLoSO...514041K. doi:10.1371/journal.pone.0014041. PMC 2984494. PMID 21103348.
- ^ Wangemann P, Nakaya K, Wu T, Maganti RJ, Itza EM, Sanneman JD, et al. (May 2007). "Loss of cochlear HCO3- secretion causes deafness via endolymphatic acidification and inhibition of Ca2+ reabsorption in a Pendred syndrome mouse model". American Journal of Physiology. Renal Physiology. 292 (5): F1345–F1353. doi:10.1152/ajprenal.00487.2006. PMC 2020516. PMID 17299139.
- ^ Wall SM (2006). "The Renal Physiology of Pendrin (SLC26A4) and Its Role in Hypertension". Epithelial Anion Transport in Health and Disease: The Role of the SLC26 Transporters Family. Novartis Foundation Symposia. Vol. 273. pp. 231–9, discussion 239–43, 261–4. doi:10.1002/0470029579.ch15. ISBN 978-0-470-02957-2. PMID 17120771.
- ^ Royaux IE, Wall SM, Karniski LP, Everett LA, Suzuki K, Knepper MA, et al. (March 2001). "Pendrin, encoded by the Pendred syndrome gene, resides in the apical region of renal intercalated cells and mediates bicarbonate secretion". Proceedings of the National Academy of Sciences of the United States of America. 98 (7): 4221–4226. Bibcode:2001PNAS...98.4221R. doi:10.1073/pnas.071516798. PMC 31206. PMID 11274445.
- ^ Koeppen BM, Stanton BA, Swiatecka-Urban A, eds. (2024). Berne & Levy Physiology (8th ed.). Philadelphia, PA: Elsevier. ISBN 978-0-323-84790-2.
- ^ Pela I, Bigozzi M, Bianchi B (June 2008). "Profound hypokalemia and hypochloremic metabolic alkalosis during thiazide therapy in a child with Pendred syndrome". Clinical Nephrology. 69 (6): 450–453. doi:10.5414/cnp69450. PMID 18538122.
- ^ Kuperman DA, Lewis CC, Woodruff PG, Rodriguez MW, Yang YH, Dolganov GM, et al. (August 2005). "Dissecting asthma using focused transgenic modeling and functional genomics". The Journal of Allergy and Clinical Immunology. 116 (2): 305–311. doi:10.1016/j.jaci.2005.03.024. PMID 16083784.
- ^ Zhen G, Park SW, Nguyenvu LT, Rodriguez MW, Barbeau R, Paquet AC, et al. (February 2007). "IL-13 and epidermal growth factor receptor have critical but distinct roles in epithelial cell mucin production". American Journal of Respiratory Cell and Molecular Biology. 36 (2): 244–253. doi:10.1165/rcmb.2006-0180OC. PMC 1899314. PMID 16980555.
- ^ Pedemonte N, Caci E, Sondo E, Caputo A, Rhoden K, Pfeffer U, et al. (April 2007). "Thiocyanate transport in resting and IL-4-stimulated human bronchial epithelial cells: role of pendrin and anion channels". Journal of Immunology. 178 (8): 5144–5153. doi:10.4049/jimmunol.178.8.5144. PMID 17404297.
- ^ Nakao I, Kanaji S, Ohta S, Matsushita H, Arima K, Yuyama N, et al. (May 2008). "Identification of pendrin as a common mediator for mucus production in bronchial asthma and chronic obstructive pulmonary disease". Journal of Immunology. 180 (9): 6262–6269. doi:10.4049/jimmunol.180.9.6262. PMID 18424749.
- ^ Nakagami Y, Favoreto S, Zhen G, Park SW, Nguyenvu LT, Kuperman DA, et al. (August 2008). "The epithelial anion transporter pendrin is induced by allergy and rhinovirus infection, regulates airway surface liquid, and increases airway reactivity and inflammation in an asthma model". Journal of Immunology. 181 (3): 2203–2210. doi:10.4049/jimmunol.181.3.2203. PMC 2491716. PMID 18641360.
Markovich D (October 2001). "Physiological roles and regulation of mammalian sulfate transporters". Physiological Reviews. 81 (4): 1499–1533. doi:10.1152/physrev.2001.81.4.1499. PMID 11581495. S2CID 30942862.
Baldwin CT, Weiss S, Farrer LA, De Stefano AL, Adair R, Franklyn B, et al. (September 1995). "Linkage of congenital, recessive deafness (DFNB4) to chromosome 7q31 and evidence for genetic heterogeneity in the Middle Eastern Druze population". Human Molecular Genetics. 4 (9): 1637–1642. doi:10.1093/hmg/4.9.1637. PMID 8541853.
Coyle B, Coffey R, Armour JA, Gausden E, Hochberg Z, Grossman A, et al. (April 1996). "Pendred syndrome (goitre and sensorineural hearing loss) maps to chromosome 7 in the region containing the nonsyndromic deafness gene DFNB4". Nature Genetics. 12 (4): 421–423. doi:10.1038/ng0496-421. PMID 8630497. S2CID 7166946.
Sheffield VC, Kraiem Z, Beck JC, Nishimura D, Stone EM, Salameh M, et al. (April 1996). "Pendred syndrome maps to chromosome 7q21-34 and is caused by an intrinsic defect in thyroid iodine organification". Nature Genetics. 12 (4): 424–426. doi:10.1038/ng0496-424. PMID 8630498. S2CID 25888014.
Gausden E, Armour JA, Coyle B, Coffey R, Hochberg Z, Pembrey M, et al. (April 1996). "Thyroid peroxidase: evidence for disease gene exclusion in Pendred's syndrome". Clinical Endocrinology. 44 (4): 441–446. doi:10.1046/j.1365-2265.1996.714536.x. PMID 8706311. S2CID 21410631.
Coucke P, Van Camp G, Demirhan O, Kabakkaya Y, Balemans W, Van Hauwe P, et al. (February 1997). "The gene for Pendred syndrome is located between D7S501 and D7S692 in a 1.7-cM region on chromosome 7q". Genomics. 40 (1): 48–54. doi:10.1006/geno.1996.4541. hdl:2066/25039. PMID 9070918.
Li XC, Everett LA, Lalwani AK, Desmukh D, Friedman TB, Green ED, et al. (March 1998). "A mutation in PDS causes non-syndromic recessive deafness". Nature Genetics. 18 (3): 215–217. doi:10.1038/ng0398-215. PMID 9500541. S2CID 40830620.
Van Hauwe P, Everett LA, Coucke P, Scott DA, Kraft ML, Ris-Stalpers C, et al. (July 1998). "Two frequent missense mutations in Pendred syndrome". Human Molecular Genetics. 7 (7): 1099–1104. doi:10.1093/hmg/7.7.1099. PMID 9618166.
Coyle B, Reardon W, Herbrick JA, Tsui LC, Gausden E, Lee J, et al. (July 1998). "Molecular analysis of the PDS gene in Pendred syndrome". Human Molecular Genetics. 7 (7): 1105–1112. doi:10.1093/hmg/7.7.1105. PMID 9618167.
Usami S, Abe S, Weston MD, Shinkawa H, Van Camp G, Kimberling WJ (February 1999). "Non-syndromic hearing loss associated with enlarged vestibular aqueduct is caused by PDS mutations". Human Genetics. 104 (2): 188–192. doi:10.1007/s004390050933. PMID 10190331. S2CID 3116063.
Masmoudi S, Charfedine I, Hmani M, Grati M, Ghorbel AM, Elgaied-Boulila A, et al. (January 2000). "Pendred syndrome: phenotypic variability in two families carrying the same PDS missense mutation". American Journal of Medical Genetics. 90 (1): 38–44. doi:10.1002/(SICI)1096-8628(20000103)90:1<38::AID-AJMG8>3.0.CO;2-R. PMID 10602116.
Reardon W, OMahoney CF, Trembath R, Jan H, Phelps PD (February 2000). "Enlarged vestibular aqueduct: a radiological marker of pendred syndrome, and mutation of the PDS gene". QJM. 93 (2): 99–104. doi:10.1093/qjmed/93.2.99. PMID 10700480.
Bogazzi F, Raggi F, Ultimieri F, Campomori A, Cosci C, Berrettini S, et al. (March 2000). "A novel mutation in the pendrin gene associated with Pendred's syndrome". Clinical Endocrinology. 52 (3): 279–285. doi:10.1046/j.1365-2265.2000.00930.x. PMID 10718825. S2CID 40121366.
Bidart JM, Mian C, Lazar V, Russo D, Filetti S, Caillou B, et al. (May 2000). "Expression of pendrin and the Pendred syndrome (PDS) gene in human thyroid tissues". The Journal of Clinical Endocrinology and Metabolism. 85 (5): 2028–2033. doi:10.1210/jcem.85.5.6519. PMID 10843192.
Adato A, Raskin L, Petit C, Bonne-Tamir B (June 2000). "Deafness heterogeneity in a Druze isolate from the Middle East: novel OTOF and PDS mutations, low prevalence of GJB2 35delG mutation and indication for a new DFNB locus". European Journal of Human Genetics. 8 (6): 437–442. doi:10.1038/sj.ejhg.5200489. PMID 10878664.
Lohi H, Kujala M, Kerkelä E, Saarialho-Kere U, Kestilä M, Kere J (November 2000). "Mapping of five new putative anion transporter genes in human and characterization of SLC26A6, a candidate gene for pancreatic anion exchanger". Genomics. 70 (1): 102–112. doi:10.1006/geno.2000.6355. PMID 11087667.
Campbell C, Cucci RA, Prasad S, Green GE, Edeal JB, Galer CE, et al. (May 2001). "Pendred syndrome, DFNB4, and PDS/SLC26A4 identification of eight novel mutations and possible genotype-phenotype correlations". Human Mutation. 17 (5): 403–411. doi:10.1002/humu.1116. PMID 11317356. S2CID 36643824.
SLC26A4+protein,+human at the U.S. National Library of Medicine Medical Subject Headings (MeSH)