Progressively measurable process (original) (raw)

From Wikipedia, the free encyclopedia

In mathematics, progressive measurability is a property in the theory of stochastic processes. A progressively measurable process, while defined quite technically, is important because it implies the stopped process is measurable. Being progressively measurable is a strictly stronger property than the notion of being an adapted process.[1] Progressively measurable processes are important in the theory of Itô integrals.

Let

The process X {\displaystyle X} {\displaystyle X} is said to be progressively measurable[2] (or simply progressive) if, for every time t {\displaystyle t} {\displaystyle t}, the map [ 0 , t ] × Ω → X {\displaystyle [0,t]\times \Omega \to \mathbb {X} } {\displaystyle [0,t]\times \Omega \to \mathbb {X} } defined by ( s , ω ) ↦ X s ( ω ) {\displaystyle (s,\omega )\mapsto X_{s}(\omega )} {\displaystyle (s,\omega )\mapsto X_{s}(\omega )} is B o r e l ( [ 0 , t ] ) ⊗ F t {\displaystyle \mathrm {Borel} ([0,t])\otimes {\mathcal {F}}_{t}} {\displaystyle \mathrm {Borel} ([0,t])\otimes {\mathcal {F}}_{t}}-measurable. This implies that X {\displaystyle X} {\displaystyle X} is F t {\displaystyle {\mathcal {F}}_{t}} {\displaystyle {\mathcal {F}}_{t}}-adapted.[1]

A subset P ⊆ [ 0 , ∞ ) × Ω {\displaystyle P\subseteq [0,\infty )\times \Omega } ![{\displaystyle P\subseteq 0,\infty )\times \Omega } is said to be progressively measurable if the process X s ( ω ) := χ P ( s , ω ) {\displaystyle X_{s}(\omega ):=\chi _{P}(s,\omega )} {\displaystyle X_{s}(\omega ):=\chi _{P}(s,\omega )} is progressively measurable in the sense defined above, where χ P {\displaystyle \chi _{P}} {\displaystyle \chi _{P}} is the indicator function of P {\displaystyle P} {\displaystyle P}. The set of all such subsets P {\displaystyle P} {\displaystyle P} form a sigma algebra on [ 0 , ∞ ) × Ω {\displaystyle [0,\infty )\times \Omega } ![{\displaystyle 0,\infty )\times \Omega }, denoted by P r o g {\displaystyle \mathrm {Prog} } {\displaystyle \mathrm {Prog} }, and a process X {\displaystyle X} {\displaystyle X} is progressively measurable in the sense of the previous paragraph if, and only if, it is P r o g {\displaystyle \mathrm {Prog} } {\displaystyle \mathrm {Prog} }-measurable.

∫ 0 T X t d B t {\displaystyle \int _{0}^{T}X_{t}\,\mathrm {d} B_{t}} {\displaystyle \int _{0}^{T}X_{t}\,\mathrm {d} B_{t}}

with respect to Brownian motion B {\displaystyle B} {\displaystyle B} is defined, is the set of equivalence classes of P r o g {\displaystyle \mathrm {Prog} } {\displaystyle \mathrm {Prog} }-measurable processes in L 2 ( [ 0 , T ] × Ω ; R n ) {\displaystyle L^{2}([0,T]\times \Omega ;\mathbb {R} ^{n})} {\displaystyle L^{2}([0,T]\times \Omega ;\mathbb {R} ^{n})}.

  1. ^ a b c d e Karatzas, Ioannis; Shreve, Steven (1991). Brownian Motion and Stochastic Calculus (2nd ed.). Springer. pp. 4–5. ISBN 0-387-97655-8.
  2. ^ Pascucci, Andrea (2011). "Continuous-time stochastic processes". PDE and Martingale Methods in Option Pricing. Bocconi & Springer Series. Springer. p. 110. doi:10.1007/978-88-470-1781-8. ISBN 978-88-470-1780-1. S2CID 118113178.