Quantifier rank (original) (raw)
From Wikipedia, the free encyclopedia
Depth of nesting of quantifiers in a formula
In mathematical logic, the quantifier rank of a formula is the depth of nesting of its quantifiers. It plays an essential role in model theory.
The quantifier rank is a property of the formula itself (i.e. the expression in a language). Thus two logically equivalent formulae can have different quantifier ranks, when they express the same thing in different ways.
In first-order logic
[edit]
Let φ {\displaystyle \varphi } be a first-order formula. The quantifier rank of φ {\displaystyle \varphi }
, written qr ( φ ) {\displaystyle \operatorname {qr} (\varphi )}
, is defined as:
Remarks
In higher-order logic
[edit]
For fixed-point logic, with a least fixed-point operator LFP {\displaystyle \operatorname {LFP} } : qr ( [ LFP ϕ ] y ) = 1 + qr ( ϕ ) {\displaystyle \operatorname {qr} ([\operatorname {LFP} _{\phi }]y)=1+\operatorname {qr} (\phi )}
.
- A sentence of quantifier rank 2:
∀ x ∃ y R ( x , y ) {\displaystyle \forall x\exists yR(x,y)}
- A formula of quantifier rank 1:
∀ x R ( y , x ) ∧ ∃ x R ( x , y ) {\displaystyle \forall xR(y,x)\wedge \exists xR(x,y)}
- A formula of quantifier rank 0:
R ( x , y ) ∧ x ≠ y {\displaystyle R(x,y)\wedge x\neq y}
- A sentence in prenex normal form of quantifier rank 3:
∀ x ∃ y ∃ z ( ( x ≠ y ∧ x R y ) ∧ ( x ≠ z ∧ z R x ) ) {\displaystyle \forall x\exists y\exists z((x\neq y\wedge xRy)\wedge (x\neq z\wedge zRx))}
- A sentence, equivalent to the previous, although of quantifier rank 2:
∀ x ( ∃ y ( x ≠ y ∧ x R y ) ) ∧ ∃ z ( x ≠ z ∧ z R x ) ) {\displaystyle \forall x(\exists y(x\neq y\wedge xRy))\wedge \exists z(x\neq z\wedge zRx))}
- Ehrenfeucht–Fraïssé game
- Ebbinghaus, Heinz-Dieter; Flum, Jörg (1995), Finite Model Theory, Springer, ISBN 978-3-540-60149-4.
- Grädel, Erich; Kolaitis, Phokion G.; Libkin, Leonid; Maarten, Marx; Spencer, Joel; Vardi, Moshe Y.; Venema, Yde; Weinstein, Scott (2007), Finite model theory and its applications, Texts in Theoretical Computer Science. An EATCS Series, Berlin: Springer-Verlag, p. 133, ISBN 978-3-540-00428-8, Zbl 1133.03001.
- Quantifier Rank Spectrum of L-infinity-omega BA Thesis, 2000