RRKM theory (original) (raw)

From Wikipedia, the free encyclopedia

Microcanonic transition state theory of unimolecular reactions

The Rice–Ramsperger–Kassel–Marcus (RRKM) theory is a theory of chemical reactivity.[1][2][3] It was developed by Rice and Ramsperger in 1927[4] and Kassel in 1928[5] (RRK theory[6]) and generalized (into the RRKM theory) in 1952 by Marcus[7] who took the transition state theory developed by Eyring in 1935 into account. These methods enable the computation of simple estimates of the unimolecular reaction rates from a few characteristics of the potential energy surface.

Assume that the molecule consists of harmonic oscillators, which are connected and can exchange energy with each other.

Assume that A* is an excited molecule:

A ∗ → k ( E ) A ‡ → P {\displaystyle A^{*}{\xrightarrow {k(E)}}A^{\ddagger }\rightarrow P} {\displaystyle A^{*}{\xrightarrow {k(E)}}A^{\ddagger }\rightarrow P}

where P stands for product, and _A_‡ for the critical atomic configuration with the maximum energy _E_0 along the reaction coordinate.

The unimolecular rate constant k u n i {\displaystyle k_{\mathrm {uni} }} {\displaystyle k_{\mathrm {uni} }} is obtained as follows:[8]

k u n i = 1 h Q r Q v ∫ E 0 ∞ d E ∑ J = 0 ∞ ( 2 J + 1 ) G ‡ ( E , J ) exp ( − E k b T ) 1 + k ( E , J ) ω , {\displaystyle k_{\mathrm {uni} }={\frac {1}{hQ_{r}Q_{v}}}\int \limits _{E_{0}}^{\infty }\mathrm {d} E\sum _{J=0}^{\infty }{\frac {(2J+1)G^{\ddagger }(E,J)\exp \!\left({\frac {-E}{k_{b}T}}\right)}{1+{\frac {k(E,J)}{\omega }}}},} {\displaystyle k_{\mathrm {uni} }={\frac {1}{hQ_{r}Q_{v}}}\int \limits _{E_{0}}^{\infty }\mathrm {d} E\sum _{J=0}^{\infty }{\frac {(2J+1)G^{\ddagger }(E,J)\exp \!\left({\frac {-E}{k_{b}T}}\right)}{1+{\frac {k(E,J)}{\omega }}}},}

where k ( E , J ) {\displaystyle k(E,J)} {\displaystyle k(E,J)} is the microcanonical transition state theory rate constant, G ‡ {\displaystyle G^{\ddagger }} {\displaystyle G^{\ddagger }} is the sum of states for the active degrees of freedom in the transition state, J {\displaystyle J} {\displaystyle J} is the quantum number of angular momentum, ω {\displaystyle \omega } {\displaystyle \omega } is the collision frequency between A ∗ {\displaystyle A^{*}} {\displaystyle A^{*}} molecule and bath molecules, Q r {\displaystyle Q_{r}} {\displaystyle Q_{r}} and Q v {\displaystyle Q_{v}} {\displaystyle Q_{v}} are the molecular vibrational and external rotational partition functions.

  1. ^ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "Rice–Ramsperger–Kassel–Marcus (RRKM) theory". doi:10.1351/goldbook.R05391
  2. ^ Di Giacomo, F. (2015). "A Short Account of RRKM Theory of Unimolecular Reactions and of Marcus Theory of Electron Transfer in a Historical Perspective". Journal of Chemical Education. 92 (3): 476–481. Bibcode:2015JChEd..92..476D. doi:10.1021/ed5001312.
  3. ^ Lindemann, F. A.; Arrhenius, S.; Langmuir, I.; Dhar, N. R.; Perrin, J.; Mcc. Lewis, W. C. (1922). "Discussion on ?the radiation theory of chemical action?". Transactions of the Faraday Society. 17: 598–606. doi:10.1039/TF9221700598.
  4. ^ Rice, Oscar Knefler; Ramsperger, Herman Carl (1927), "Theories of unimolecular gas reactions at low pressures", Journal of the American Chemical Society, 49 (7): 1617–1629, doi:10.1021/ja01406a001
  5. ^ Kassel, Louis Stevenson (1928), "Studies in Homogeneous Gas Reactions I", The Journal of Physical Chemistry, 32 (2): 225–242, doi:10.1021/j150284a007
  6. ^ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "Rice–Ramsperger–Kassel (RRK) theory". doi:10.1351/goldbook.R05390
  7. ^ Marcus, Rudolph A. (1952), "Unimolecular Dissociations and Free Radical Recombination Reactions" (PDF), J. Chem. Phys., 20 (3): 359–364, Bibcode:1952JChPh..20..359M, doi:10.1063/1.1700424
  8. ^ J. I. Steinfeld; J. S. Francisco; W. L. Hase (1998). Chemical Kinetics and Dynamics (2 ed.). Prentice Hall. ISBN 978-0-13737123-5.