Ramanujan tau function (original) (raw)
From Wikipedia, the free encyclopedia
Function studied by Ramanujan
Values of | τ ( n ) | {\displaystyle |\tau (n)|} for n < 16 , 000 {\displaystyle n<16,000}
with a logarithmic scale. The blue line picks only the values of n {\displaystyle n}
that are multiples of 121.
The Ramanujan tau function, studied by Ramanujan (1916), is the function τ : N → Z {\displaystyle \tau :\mathbb {N} \to \mathbb {Z} } defined by the following identity:
∑ n ≥ 1 τ ( n ) q n = q ∏ n ≥ 1 ( 1 − q n ) 24 = q ϕ ( q ) 24 = η ( z ) 24 = Δ ( z ) , {\displaystyle \sum _{n\geq 1}\tau (n)q^{n}=q\prod _{n\geq 1}\left(1-q^{n}\right)^{24}=q\phi (q)^{24}=\eta (z)^{24}=\Delta (z),}
where q = exp ( 2 π i z ) {\displaystyle q=\exp(2\pi iz)} with I m ( z ) > 0 {\displaystyle \mathrm {Im} (z)>0}
, ϕ {\displaystyle \phi }
is the Euler function, η {\displaystyle \eta }
is the Dedekind eta function, and the function Δ ( z ) {\displaystyle \Delta (z)}
is a holomorphic cusp form of weight 12 and level 1, known as the discriminant modular form (some authors, notably Apostol, write Δ / ( 2 π ) 12 {\displaystyle \Delta /(2\pi )^{12}}
instead of Δ {\displaystyle \Delta }
). It appears in connection to an "error term" involved in counting the number of ways of expressing an integer as a sum of 24 squares. A formula due to Ian G. Macdonald was given in Dyson (1972).
The first few values of the tau function are given in the following table (sequence A000594 in the OEIS):
n {\displaystyle n} |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
τ ( n ) {\displaystyle \tau (n)} |
1 | −24 | 252 | −1472 | 4830 | −6048 | −16744 | 84480 | −113643 | −115920 | 534612 | −370944 | −577738 | 401856 | 1217160 | 987136 |
Calculating this function on an odd square number (i.e. a centered octagonal number) yields an odd number, whereas for any other number the function yields an even number.[1]
Ramanujan's conjectures
[edit]
Ramanujan (1916) observed, but did not prove, the following three properties of τ ( n ) {\displaystyle \tau (n)} :
The first two properties were proved by Mordell (1917) and the third one, called the Ramanujan conjecture, was proved by Deligne in 1974 as a consequence of his proof of the Weil conjectures (specifically, he deduced it by applying them to a Kuga-Sato variety).
Congruences for the tau function
[edit]
For k ∈ Z {\displaystyle k\in \mathbb {Z} } and n ∈ N {\displaystyle n\in \mathbb {N} }
, the Divisor function σ k ( n ) {\displaystyle \sigma _{k}(n)}
is the sum of the k {\displaystyle k}
th powers of the divisors of n {\displaystyle n}
. The tau function satisfies several congruence relations; many of them can be expressed in terms of σ k ( n ) {\displaystyle \sigma _{k}(n)}
. Here are some:[2]
- τ ( n ) ≡ σ 11 ( n ) mod 2 11 for n ≡ 1 mod 8 {\displaystyle \tau (n)\equiv \sigma _{11}(n)\ {\bmod {\ }}2^{11}{\text{ for }}n\equiv 1\ {\bmod {\ }}8}
[3]
- τ ( n ) ≡ 1217 σ 11 ( n ) mod 2 13 for n ≡ 3 mod 8 {\displaystyle \tau (n)\equiv 1217\sigma _{11}(n)\ {\bmod {\ }}2^{13}{\text{ for }}n\equiv 3\ {\bmod {\ }}8}
[3]
- τ ( n ) ≡ 1537 σ 11 ( n ) mod 2 12 for n ≡ 5 mod 8 {\displaystyle \tau (n)\equiv 1537\sigma _{11}(n)\ {\bmod {\ }}2^{12}{\text{ for }}n\equiv 5\ {\bmod {\ }}8}
[3]
- τ ( n ) ≡ 705 σ 11 ( n ) mod 2 14 for n ≡ 7 mod 8 {\displaystyle \tau (n)\equiv 705\sigma _{11}(n)\ {\bmod {\ }}2^{14}{\text{ for }}n\equiv 7\ {\bmod {\ }}8}
[3]
- τ ( n ) ≡ n − 610 σ 1231 ( n ) mod 3 6 for n ≡ 1 mod 3 {\displaystyle \tau (n)\equiv n^{-610}\sigma _{1231}(n)\ {\bmod {\ }}3^{6}{\text{ for }}n\equiv 1\ {\bmod {\ }}3}
[4]
- τ ( n ) ≡ n − 610 σ 1231 ( n ) mod 3 7 for n ≡ 2 mod 3 {\displaystyle \tau (n)\equiv n^{-610}\sigma _{1231}(n)\ {\bmod {\ }}3^{7}{\text{ for }}n\equiv 2\ {\bmod {\ }}3}
[4]
- τ ( n ) ≡ n − 30 σ 71 ( n ) mod 5 3 for n ≢ 0 mod 5 {\displaystyle \tau (n)\equiv n^{-30}\sigma _{71}(n)\ {\bmod {\ }}5^{3}{\text{ for }}n\not \equiv 0\ {\bmod {\ }}5}
[5]
- τ ( n ) ≡ n σ 9 ( n ) mod 7 {\displaystyle \tau (n)\equiv n\sigma _{9}(n)\ {\bmod {\ }}7}
[6]
- τ ( n ) ≡ n σ 9 ( n ) mod 7 2 for n ≡ 3 , 5 , 6 mod 7 {\displaystyle \tau (n)\equiv n\sigma _{9}(n)\ {\bmod {\ }}7^{2}{\text{ for }}n\equiv 3,5,6\ {\bmod {\ }}7}
[6]
- τ ( n ) ≡ σ 11 ( n ) mod 691. {\displaystyle \tau (n)\equiv \sigma _{11}(n)\ {\bmod {\ }}691.}
[7]
For p ≠ 23 {\displaystyle p\neq 23} prime, we have[2][8]
- τ ( p ) ≡ 0 mod 23 if ( p 23 ) = − 1 {\displaystyle \tau (p)\equiv 0\ {\bmod {\ }}23{\text{ if }}\left({\frac {p}{23}}\right)=-1}
- τ ( p ) ≡ σ 11 ( p ) mod 23 2 if p is of the form a 2 + 23 b 2 {\displaystyle \tau (p)\equiv \sigma _{11}(p)\ {\bmod {\ }}23^{2}{\text{ if }}p{\text{ is of the form }}a^{2}+23b^{2}}
[9]
- τ ( p ) ≡ − 1 mod 23 otherwise . {\displaystyle \tau (p)\equiv -1\ {\bmod {\ }}23{\text{ otherwise}}.}
In 1975 Douglas Niebur proved an explicit formula for the Ramanujan tau function:[10]
τ ( n ) = n 4 σ ( n ) − 24 ∑ i = 1 n − 1 i 2 ( 35 i 2 − 52 i n + 18 n 2 ) σ ( i ) σ ( n − i ) . {\displaystyle \tau (n)=n^{4}\sigma (n)-24\sum _{i=1}^{n-1}i^{2}(35i^{2}-52in+18n^{2})\sigma (i)\sigma (n-i).}
where σ ( n ) {\displaystyle \sigma (n)} is the sum of the positive divisors of n {\displaystyle n}
.
Conjectures on the tau function
[edit]
Suppose that f {\displaystyle f} is a weight- k {\displaystyle k}
integer newform and the Fourier coefficients a ( n ) {\displaystyle a(n)}
are integers. Consider the problem:
Given that f {\displaystyle f} does not have complex multiplication, do almost all primes p {\displaystyle p}
have the property that a ( p ) ≢ 0 ( mod p ) {\displaystyle a(p)\not \equiv 0{\pmod {p}}}
?
Indeed, most primes should have this property, and hence they are called ordinary. Despite the big advances by Deligne and Serre on Galois representations, which determine a ( n ) ( mod p ) {\displaystyle a(n){\pmod {p}}} for n {\displaystyle n}
coprime to p {\displaystyle p}
, it is unclear how to compute a ( p ) ( mod p ) {\displaystyle a(p){\pmod {p}}}
. The only theorem in this regard is Elkies' famous result for modular elliptic curves, which guarantees that there are infinitely many primes p {\displaystyle p}
such that a ( p ) = 0 {\displaystyle a(p)=0}
, which thus are congruent to 0 modulo p {\displaystyle p}
. There are no known examples of non-CM f {\displaystyle f}
with weight greater than 2 for which a ( p ) ≢ 0 ( mod p ) {\displaystyle a(p)\not \equiv 0{\pmod {p}}}
for infinitely many primes p {\displaystyle p}
(although it should be true for almost all p {\displaystyle p}
. There are also no known examples with a ( p ) ≡ 0 ( mod p ) {\displaystyle a(p)\equiv 0{\pmod {p}}}
for infinitely many p {\displaystyle p}
. Some researchers had begun to doubt whether a ( p ) ≡ 0 ( mod p ) {\displaystyle a(p)\equiv 0{\pmod {p}}}
for infinitely many p {\displaystyle p}
. As evidence, many provided Ramanujan's τ ( p ) {\displaystyle \tau (p)}
(case of weight 12). The only solutions up to 10 10 {\displaystyle 10^{10}}
to the equation τ ( p ) ≡ 0 ( mod p ) {\displaystyle \tau (p)\equiv 0{\pmod {p}}}
are 2, 3, 5, 7, 2411, and 7758337633 (sequence A007659 in the OEIS).[11]
Lehmer (1947) conjectured that τ ( n ) ≠ 0 {\displaystyle \tau (n)\neq 0} for all n {\displaystyle n}
, an assertion sometimes known as Lehmer's conjecture. Lehmer verified the conjecture for n {\displaystyle n}
up to 214928639999 (Apostol 1997, p. 22). The following table summarizes progress on finding successively larger values of N {\displaystyle N}
for which this condition holds for all n ≤ N {\displaystyle n\leq N}
.
N {\displaystyle N} |
reference |
---|---|
3316799 | Lehmer (1947) |
214928639999 | Lehmer (1949) |
1000000000000000 | Serre (1973, p. 98), Serre (1985) |
1213229187071998 | Jennings (1993) |
22689242781695999 | Jordan and Kelly (1999) |
22798241520242687999 | Bosman (2007) |
982149821766199295999 | Zeng and Yin (2013) |
816212624008487344127999 | Derickx, van Hoeij, and Zeng (2013) |
Ramanujan's L-function
[edit]
Ramanujan's L {\displaystyle L} -function is defined by
L ( s ) = ∑ n ≥ 1 τ ( n ) n s {\displaystyle L(s)=\sum _{n\geq 1}{\frac {\tau (n)}{n^{s}}}}
if R e ( s ) > 6 {\displaystyle \mathrm {Re} (s)>6} and by analytic continuation otherwise. It satisfies the functional equation
L ( s ) Γ ( s ) ( 2 π ) s = L ( 12 − s ) Γ ( 12 − s ) ( 2 π ) 12 − s , s ∉ Z 0 − , 12 − s ∉ Z 0 − {\displaystyle {\frac {L(s)\Gamma (s)}{(2\pi )^{s}}}={\frac {L(12-s)\Gamma (12-s)}{(2\pi )^{12-s}}},\quad s\notin \mathbb {Z} _{0}^{-},\,12-s\notin \mathbb {Z} _{0}^{-}}
and has the Euler product
L ( s ) = ∏ p prime 1 1 − τ ( p ) p − s + p 11 − 2 s , R e ( s ) > 7. {\displaystyle L(s)=\prod _{p\,{\text{prime}}}{\frac {1}{1-\tau (p)p^{-s}+p^{11-2s}}},\quad \mathrm {Re} (s)>7.}
Ramanujan conjectured that all nontrivial zeros of L {\displaystyle L} have real part equal to 6 {\displaystyle 6}
.
- Apostol, T. M. (1997), "Modular Functions and Dirichlet Series in Number Theory", New York: Springer-Verlag 2nd Ed.
- Ashworth, M. H. (1968), Congruence and identical properties of modular forms (D. Phil. Thesis, Oxford)
- Dyson, F. J. (1972), "Missed opportunities", Bull. Amer. Math. Soc., 78 (5): 635–652, doi:10.1090/S0002-9904-1972-12971-9, Zbl 0271.01005
- Kolberg, O. (1962), "Congruences for Ramanujan's function τ(n)", Arbok Univ. Bergen Mat.-Natur. Ser. (11), MR 0158873, Zbl 0168.29502
- Lehmer, D.H. (1947), "The vanishing of Ramanujan's function τ(n)", Duke Math. J., 14 (2): 429–433, doi:10.1215/s0012-7094-47-01436-1, Zbl 0029.34502
- Lygeros, N. (2010), "A New Solution to the Equation τ(p) ≡ 0 (mod p)" (PDF), Journal of Integer Sequences, 13: Article 10.7.4
- Mordell, Louis J. (1917), "On Mr. Ramanujan's empirical expansions of modular functions.", Proceedings of the Cambridge Philosophical Society, 19: 117–124, JFM 46.0605.01
- Newman, M. (1972), A table of τ (p) modulo p, p prime, 3 ≤ p ≤ 16067, National Bureau of Standards
- Rankin, Robert A. (1988), "Ramanujan's tau-function and its generalizations", in Andrews, George E. (ed.), Ramanujan revisited (Urbana-Champaign, Ill., 1987), Boston, MA: Academic Press, pp. 245–268, ISBN 978-0-12-058560-1, MR 0938968
- Ramanujan, Srinivasa (1916), "On certain arithmetical functions", Trans. Camb. Philos. Soc., 22 (9): 159–184, MR 2280861
- Serre, J-P. (1968), "Une interprétation des congruences relatives à la fonction τ {\displaystyle \tau }
de Ramanujan", Séminaire Delange-Pisot-Poitou, 14
- Swinnerton-Dyer, H. P. F. (1973), "On _l_-adic representations and congruences for coefficients of modular forms", in Kuyk, Willem; Serre, Jean-Pierre (eds.), Modular Functions of One Variable III, Lecture Notes in Mathematics, vol. 350, pp. 1–55, doi:10.1007/978-3-540-37802-0, ISBN 978-3-540-06483-1, MR 0406931
- Wilton, J. R. (1930), "Congruence properties of Ramanujan's function τ(n)", Proceedings of the London Mathematical Society, 31: 1–10, doi:10.1112/plms/s2-31.1.1