Shift matrix (original) (raw)

From Wikipedia, the free encyclopedia

In mathematics, a shift matrix is a binary matrix with ones only on the superdiagonal or subdiagonal, and zeroes elsewhere. A shift matrix U with ones on the superdiagonal is an upper shift matrix. The alternative subdiagonal matrix L is unsurprisingly known as a lower shift matrix. The (i, j )th component of U and L are

U i j = δ i + 1 , j , L i j = δ i , j + 1 , {\displaystyle U_{ij}=\delta _{i+1,j},\quad L_{ij}=\delta _{i,j+1},} {\displaystyle U_{ij}=\delta _{i+1,j},\quad L_{ij}=\delta _{i,j+1},}

where δ i j {\displaystyle \delta _{ij}} {\displaystyle \delta _{ij}} is the Kronecker delta symbol.

For example, the 5 × 5 shift matrices are

U 5 = ( 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 ) L 5 = ( 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 ) . {\displaystyle U_{5}={\begin{pmatrix}0&1&0&0&0\\0&0&1&0&0\\0&0&0&1&0\\0&0&0&0&1\\0&0&0&0&0\end{pmatrix}}\quad L_{5}={\begin{pmatrix}0&0&0&0&0\\1&0&0&0&0\\0&1&0&0&0\\0&0&1&0&0\\0&0&0&1&0\end{pmatrix}}.} {\displaystyle U_{5}={\begin{pmatrix}0&1&0&0&0\\0&0&1&0&0\\0&0&0&1&0\\0&0&0&0&1\\0&0&0&0&0\end{pmatrix}}\quad L_{5}={\begin{pmatrix}0&0&0&0&0\\1&0&0&0&0\\0&1&0&0&0\\0&0&1&0&0\\0&0&0&1&0\end{pmatrix}}.}

Clearly, the transpose of a lower shift matrix is an upper shift matrix and vice versa.

As a linear transformation, a lower shift matrix shifts the components of a column vector one position down, with a zero appearing in the first position. An upper shift matrix shifts the components of a column vector one position up, with a zero appearing in the last position.[1]

Premultiplying a matrix A by a lower shift matrix results in the elements of A being shifted downward by one position, with zeroes appearing in the top row. Postmultiplication by a lower shift matrix results in a shift left. Similar operations involving an upper shift matrix result in the opposite shift.

Clearly all finite-dimensional shift matrices are nilpotent; an n × n shift matrix S becomes the zero matrix when raised to the power of its dimension n.

Shift matrices act on shift spaces. The infinite-dimensional shift matrices are particularly important for the study of ergodic systems. Important examples of infinite-dimensional shifts are the Bernoulli shift, which acts as a shift on Cantor space, and the Gauss map, which acts as a shift on the space of continued fractions (that is, on Baire space.)

Let L and U be the n × n lower and upper shift matrices, respectively. The following properties hold for both U and L. Let us therefore only list the properties for U:

The following properties show how U and L are related:

If N is any nilpotent matrix, then N is similar to a block diagonal matrix of the form

( S 1 0 … 0 0 S 2 … 0 ⋮ ⋮ ⋱ ⋮ 0 0 … S r ) {\displaystyle {\begin{pmatrix}S_{1}&0&\ldots &0\\0&S_{2}&\ldots &0\\\vdots &\vdots &\ddots &\vdots \\0&0&\ldots &S_{r}\end{pmatrix}}} {\displaystyle {\begin{pmatrix}S_{1}&0&\ldots &0\\0&S_{2}&\ldots &0\\\vdots &\vdots &\ddots &\vdots \\0&0&\ldots &S_{r}\end{pmatrix}}}

where each of the blocks _S_1, _S_2, ..., S r is a shift matrix (possibly of different sizes).[2][3]

S = ( 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 ) ; A = ( 1 1 1 1 1 1 2 2 2 1 1 2 3 2 1 1 2 2 2 1 1 1 1 1 1 ) . {\displaystyle S={\begin{pmatrix}0&0&0&0&0\\1&0&0&0&0\\0&1&0&0&0\\0&0&1&0&0\\0&0&0&1&0\end{pmatrix}};\quad A={\begin{pmatrix}1&1&1&1&1\\1&2&2&2&1\\1&2&3&2&1\\1&2&2&2&1\\1&1&1&1&1\end{pmatrix}}.} {\displaystyle S={\begin{pmatrix}0&0&0&0&0\\1&0&0&0&0\\0&1&0&0&0\\0&0&1&0&0\\0&0&0&1&0\end{pmatrix}};\quad A={\begin{pmatrix}1&1&1&1&1\\1&2&2&2&1\\1&2&3&2&1\\1&2&2&2&1\\1&1&1&1&1\end{pmatrix}}.}

Then,

S A = ( 0 0 0 0 0 1 1 1 1 1 1 2 2 2 1 1 2 3 2 1 1 2 2 2 1 ) ; A S = ( 1 1 1 1 0 2 2 2 1 0 2 3 2 1 0 2 2 2 1 0 1 1 1 1 0 ) . {\displaystyle SA={\begin{pmatrix}0&0&0&0&0\\1&1&1&1&1\\1&2&2&2&1\\1&2&3&2&1\\1&2&2&2&1\end{pmatrix}};\quad AS={\begin{pmatrix}1&1&1&1&0\\2&2&2&1&0\\2&3&2&1&0\\2&2&2&1&0\\1&1&1&1&0\end{pmatrix}}.} {\displaystyle SA={\begin{pmatrix}0&0&0&0&0\\1&1&1&1&1\\1&2&2&2&1\\1&2&3&2&1\\1&2&2&2&1\end{pmatrix}};\quad AS={\begin{pmatrix}1&1&1&1&0\\2&2&2&1&0\\2&3&2&1&0\\2&2&2&1&0\\1&1&1&1&0\end{pmatrix}}.}

Clearly there are many possible permutations. For example, S T A S {\displaystyle S^{\mathsf {T}}AS} {\displaystyle S^{\mathsf {T}}AS} is equal to the matrix A shifted up and left along the main diagonal.

S T A S = ( 2 2 2 1 0 2 3 2 1 0 2 2 2 1 0 1 1 1 1 0 0 0 0 0 0 ) . {\displaystyle S^{\mathsf {T}}AS={\begin{pmatrix}2&2&2&1&0\\2&3&2&1&0\\2&2&2&1&0\\1&1&1&1&0\\0&0&0&0&0\end{pmatrix}}.} {\displaystyle S^{\mathsf {T}}AS={\begin{pmatrix}2&2&2&1&0\\2&3&2&1&0\\2&2&2&1&0\\1&1&1&1&0\\0&0&0&0&0\end{pmatrix}}.}

  1. ^ Beauregard & Fraleigh (1973, p. 312)
  2. ^ Beauregard & Fraleigh (1973, pp. 312, 313)
  3. ^ Herstein (1964, p. 250)