Shift matrix (original) (raw)
From Wikipedia, the free encyclopedia
In mathematics, a shift matrix is a binary matrix with ones only on the superdiagonal or subdiagonal, and zeroes elsewhere. A shift matrix U with ones on the superdiagonal is an upper shift matrix. The alternative subdiagonal matrix L is unsurprisingly known as a lower shift matrix. The (i, j )th component of U and L are
U i j = δ i + 1 , j , L i j = δ i , j + 1 , {\displaystyle U_{ij}=\delta _{i+1,j},\quad L_{ij}=\delta _{i,j+1},}
where δ i j {\displaystyle \delta _{ij}} is the Kronecker delta symbol.
For example, the 5 × 5 shift matrices are
U 5 = ( 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 ) L 5 = ( 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 ) . {\displaystyle U_{5}={\begin{pmatrix}0&1&0&0&0\\0&0&1&0&0\\0&0&0&1&0\\0&0&0&0&1\\0&0&0&0&0\end{pmatrix}}\quad L_{5}={\begin{pmatrix}0&0&0&0&0\\1&0&0&0&0\\0&1&0&0&0\\0&0&1&0&0\\0&0&0&1&0\end{pmatrix}}.}
Clearly, the transpose of a lower shift matrix is an upper shift matrix and vice versa.
As a linear transformation, a lower shift matrix shifts the components of a column vector one position down, with a zero appearing in the first position. An upper shift matrix shifts the components of a column vector one position up, with a zero appearing in the last position.[1]
Premultiplying a matrix A by a lower shift matrix results in the elements of A being shifted downward by one position, with zeroes appearing in the top row. Postmultiplication by a lower shift matrix results in a shift left. Similar operations involving an upper shift matrix result in the opposite shift.
Clearly all finite-dimensional shift matrices are nilpotent; an n × n shift matrix S becomes the zero matrix when raised to the power of its dimension n.
Shift matrices act on shift spaces. The infinite-dimensional shift matrices are particularly important for the study of ergodic systems. Important examples of infinite-dimensional shifts are the Bernoulli shift, which acts as a shift on Cantor space, and the Gauss map, which acts as a shift on the space of continued fractions (that is, on Baire space.)
Let L and U be the n × n lower and upper shift matrices, respectively. The following properties hold for both U and L. Let us therefore only list the properties for U:
- det(U) = 0
- tr(U) = 0
- rank(U) = n − 1
- The characteristic polynomials of U is
p U ( λ ) = ( − 1 ) n λ n . {\displaystyle p_{U}(\lambda )=(-1)^{n}\lambda ^{n}.} - U n = 0. This follows from the previous property by the Cayley–Hamilton theorem.
- The permanent of U is 0.
The following properties show how U and L are related:
- _L_T = U; _U_T = L
- The null spaces of U and L are
N ( U ) = span { ( 1 , 0 , … , 0 ) T } , {\displaystyle N(U)=\operatorname {span} \left\{(1,0,\ldots ,0)^{\mathsf {T}}\right\},}
N ( L ) = span { ( 0 , … , 0 , 1 ) T } . {\displaystyle N(L)=\operatorname {span} \left\{(0,\ldots ,0,1)^{\mathsf {T}}\right\}.} - The spectrum of U and L is { 0 } {\displaystyle \{0\}} . The algebraic multiplicity of 0 is n, and its geometric multiplicity is 1. From the expressions for the null spaces, it follows that (up to a scaling) the only eigenvector for U is ( 1 , 0 , … , 0 ) T {\displaystyle (1,0,\ldots ,0)^{\mathsf {T}}} , and the only eigenvector for L is ( 0 , … , 0 , 1 ) T {\displaystyle (0,\ldots ,0,1)^{\mathsf {T}}} .
- For LU and UL we have
U L = I − diag ( 0 , … , 0 , 1 ) , {\displaystyle UL=I-\operatorname {diag} (0,\ldots ,0,1),}
L U = I − diag ( 1 , 0 , … , 0 ) . {\displaystyle LU=I-\operatorname {diag} (1,0,\ldots ,0).}
These matrices are both idempotent, symmetric, and have the same rank as U and L - L n_−_a U n_−_a + L a U a = U n_−_a L n_−_a + U a L a = I (the identity matrix), for any integer a between 0 and n inclusive.
If N is any nilpotent matrix, then N is similar to a block diagonal matrix of the form
( S 1 0 … 0 0 S 2 … 0 ⋮ ⋮ ⋱ ⋮ 0 0 … S r ) {\displaystyle {\begin{pmatrix}S_{1}&0&\ldots &0\\0&S_{2}&\ldots &0\\\vdots &\vdots &\ddots &\vdots \\0&0&\ldots &S_{r}\end{pmatrix}}}
where each of the blocks _S_1, _S_2, ..., S r is a shift matrix (possibly of different sizes).[2][3]
S = ( 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 ) ; A = ( 1 1 1 1 1 1 2 2 2 1 1 2 3 2 1 1 2 2 2 1 1 1 1 1 1 ) . {\displaystyle S={\begin{pmatrix}0&0&0&0&0\\1&0&0&0&0\\0&1&0&0&0\\0&0&1&0&0\\0&0&0&1&0\end{pmatrix}};\quad A={\begin{pmatrix}1&1&1&1&1\\1&2&2&2&1\\1&2&3&2&1\\1&2&2&2&1\\1&1&1&1&1\end{pmatrix}}.}
Then,
S A = ( 0 0 0 0 0 1 1 1 1 1 1 2 2 2 1 1 2 3 2 1 1 2 2 2 1 ) ; A S = ( 1 1 1 1 0 2 2 2 1 0 2 3 2 1 0 2 2 2 1 0 1 1 1 1 0 ) . {\displaystyle SA={\begin{pmatrix}0&0&0&0&0\\1&1&1&1&1\\1&2&2&2&1\\1&2&3&2&1\\1&2&2&2&1\end{pmatrix}};\quad AS={\begin{pmatrix}1&1&1&1&0\\2&2&2&1&0\\2&3&2&1&0\\2&2&2&1&0\\1&1&1&1&0\end{pmatrix}}.}
Clearly there are many possible permutations. For example, S T A S {\displaystyle S^{\mathsf {T}}AS} is equal to the matrix A shifted up and left along the main diagonal.
S T A S = ( 2 2 2 1 0 2 3 2 1 0 2 2 2 1 0 1 1 1 1 0 0 0 0 0 0 ) . {\displaystyle S^{\mathsf {T}}AS={\begin{pmatrix}2&2&2&1&0\\2&3&2&1&0\\2&2&2&1&0\\1&1&1&1&0\\0&0&0&0&0\end{pmatrix}}.}
- ^ Beauregard & Fraleigh (1973, p. 312)
- ^ Beauregard & Fraleigh (1973, pp. 312, 313)
- ^ Herstein (1964, p. 250)
Beauregard, Raymond A.; Fraleigh, John B. (1973), A First Course In Linear Algebra: with Optional Introduction to Groups, Rings, and Fields, Boston: Houghton Mifflin, ISBN 0-395-14017-X, OCLC 1019797576
Herstein, I. N. (1964), Topics In Algebra, Waltham: Blaisdell Publishing, ISBN 978-1-114-54101-6, OCLC 1419919702