Sigma-ring (original) (raw)

From Wikipedia, the free encyclopedia

Family of sets closed under countable unions

In mathematics, a nonempty collection of sets is called a 𝜎-ring (pronounced sigma-ring) if it is closed under countable union and relative complementation.

Let R {\displaystyle {\mathcal {R}}} {\displaystyle {\mathcal {R}}} be a nonempty collection of sets. Then R {\displaystyle {\mathcal {R}}} {\displaystyle {\mathcal {R}}} is a 𝜎-ring if:

  1. Closed under countable unions: ⋃ n = 1 ∞ A n ∈ R {\displaystyle \bigcup _{n=1}^{\infty }A_{n}\in {\mathcal {R}}} {\displaystyle \bigcup _{n=1}^{\infty }A_{n}\in {\mathcal {R}}} if A n ∈ R {\displaystyle A_{n}\in {\mathcal {R}}} {\displaystyle A_{n}\in {\mathcal {R}}} for all n ∈ N {\displaystyle n\in \mathbb {N} } {\displaystyle n\in \mathbb {N} }
  2. Closed under relative complementation: A ∖ B ∈ R {\displaystyle A\setminus B\in {\mathcal {R}}} {\displaystyle A\setminus B\in {\mathcal {R}}} if A , B ∈ R {\displaystyle A,B\in {\mathcal {R}}} {\displaystyle A,B\in {\mathcal {R}}}

These two properties imply: ⋂ n = 1 ∞ A n ∈ R {\displaystyle \bigcap _{n=1}^{\infty }A_{n}\in {\mathcal {R}}} {\displaystyle \bigcap _{n=1}^{\infty }A_{n}\in {\mathcal {R}}}whenever A 1 , A 2 , … {\displaystyle A_{1},A_{2},\ldots } {\displaystyle A_{1},A_{2},\ldots } are elements of R . {\displaystyle {\mathcal {R}}.} {\displaystyle {\mathcal {R}}.}

This is because ⋂ n = 1 ∞ A n = A 1 ∖ ⋃ n = 2 ∞ ( A 1 ∖ A n ) . {\displaystyle \bigcap _{n=1}^{\infty }A_{n}=A_{1}\setminus \bigcup _{n=2}^{\infty }\left(A_{1}\setminus A_{n}\right).} {\displaystyle \bigcap _{n=1}^{\infty }A_{n}=A_{1}\setminus \bigcup _{n=2}^{\infty }\left(A_{1}\setminus A_{n}\right).}

Every 𝜎-ring is a δ-ring but there exist δ-rings that are not 𝜎-rings.

If the first property is weakened to closure under finite union (that is, A ∪ B ∈ R {\displaystyle A\cup B\in {\mathcal {R}}} {\displaystyle A\cup B\in {\mathcal {R}}} whenever A , B ∈ R {\displaystyle A,B\in {\mathcal {R}}} {\displaystyle A,B\in {\mathcal {R}}}) but not countable union, then R {\displaystyle {\mathcal {R}}} {\displaystyle {\mathcal {R}}} is a ring but not a 𝜎-ring.

𝜎-rings can be used instead of 𝜎-fields (𝜎-algebras) in the development of measure and integration theory, if one does not wish to require that the universal set be measurable. Every 𝜎-field is also a 𝜎-ring, but a 𝜎-ring need not be a 𝜎-field.

A 𝜎-ring R {\displaystyle {\mathcal {R}}} {\displaystyle {\mathcal {R}}} that is a collection of subsets of X {\displaystyle X} {\displaystyle X} induces a 𝜎-field for X . {\displaystyle X.} {\displaystyle X.} Define A = { E ⊆ X : E ∈ R or E c ∈ R } . {\displaystyle {\mathcal {A}}=\{E\subseteq X:E\in {\mathcal {R}}\ {\text{or}}\ E^{c}\in {\mathcal {R}}\}.} {\displaystyle {\mathcal {A}}=\{E\subseteq X:E\in {\mathcal {R}}\ {\text{or}}\ E^{c}\in {\mathcal {R}}\}.} Then A {\displaystyle {\mathcal {A}}} {\displaystyle {\mathcal {A}}} is a 𝜎-field over the set X {\displaystyle X} {\displaystyle X} - to check closure under countable union, recall a σ {\displaystyle \sigma } {\displaystyle \sigma }-ring is closed under countable intersections. In fact A {\displaystyle {\mathcal {A}}} {\displaystyle {\mathcal {A}}} is the minimal 𝜎-field containing R {\displaystyle {\mathcal {R}}} {\displaystyle {\mathcal {R}}} since it must be contained in every 𝜎-field containing R . {\displaystyle {\mathcal {R}}.} {\displaystyle {\mathcal {R}}.}

Families F {\displaystyle {\mathcal {F}}} {\displaystyle {\mathcal {F}}} of sets over Ω {\displaystyle \Omega } {\displaystyle \Omega } vte
Is necessarily true of F : {\displaystyle {\mathcal {F}}\colon } {\displaystyle {\mathcal {F}}\colon }or, is F {\displaystyle {\mathcal {F}}} {\displaystyle {\mathcal {F}}} closed under: Directed by ⊇ {\displaystyle \,\supseteq } {\displaystyle \,\supseteq } A ∩ B {\displaystyle A\cap B} {\displaystyle A\cap B} A ∪ B {\displaystyle A\cup B} {\displaystyle A\cup B} B ∖ A {\displaystyle B\setminus A} {\displaystyle B\setminus A} Ω ∖ A {\displaystyle \Omega \setminus A} {\displaystyle \Omega \setminus A} A 1 ∩ A 2 ∩ ⋯ {\displaystyle A_{1}\cap A_{2}\cap \cdots } {\displaystyle A_{1}\cap A_{2}\cap \cdots } A 1 ∪ A 2 ∪ ⋯ {\displaystyle A_{1}\cup A_{2}\cup \cdots } {\displaystyle A_{1}\cup A_{2}\cup \cdots } Ω ∈ F {\displaystyle \Omega \in {\mathcal {F}}} {\displaystyle \Omega \in {\mathcal {F}}} ∅ ∈ F {\displaystyle \varnothing \in {\mathcal {F}}} {\displaystyle \varnothing \in {\mathcal {F}}} F.I.P.
π-system Yes Yes No No No No No No No No
Semiring Yes Yes No No No No No No Yes Never
Semialgebra (Semifield) Yes Yes No No No No No No Yes Never
Monotone class No No No No No only if A i ↘ {\displaystyle A_{i}\searrow } {\displaystyle A_{i}\searrow } only if A i ↗ {\displaystyle A_{i}\nearrow } {\displaystyle A_{i}\nearrow } No No No
𝜆-system (Dynkin System) Yes No No only if A ⊆ B {\displaystyle A\subseteq B} {\displaystyle A\subseteq B} Yes No only if A i ↗ {\displaystyle A_{i}\nearrow } {\displaystyle A_{i}\nearrow } orthey are disjoint Yes Yes Never
Ring (Order theory) Yes Yes Yes No No No No No No No
Ring (Measure theory) Yes Yes Yes Yes No No No No Yes Never
δ-Ring Yes Yes Yes Yes No Yes No No Yes Never
𝜎-Ring Yes Yes Yes Yes No Yes Yes No Yes Never
Algebra (Field) Yes Yes Yes Yes Yes No No Yes Yes Never
𝜎-Algebra (𝜎-Field) Yes Yes Yes Yes Yes Yes Yes Yes Yes Never
Dual ideal Yes Yes Yes No No No Yes Yes No No
Filter Yes Yes Yes Never Never No Yes Yes ∅ ∉ F {\displaystyle \varnothing \not \in {\mathcal {F}}} {\displaystyle \varnothing \not \in {\mathcal {F}}} Yes
Prefilter (Filter base) Yes No No Never Never No No No ∅ ∉ F {\displaystyle \varnothing \not \in {\mathcal {F}}} {\displaystyle \varnothing \not \in {\mathcal {F}}} Yes
Filter subbase No No No Never Never No No No ∅ ∉ F {\displaystyle \varnothing \not \in {\mathcal {F}}} {\displaystyle \varnothing \not \in {\mathcal {F}}} Yes
Open Topology Yes Yes Yes No No No (even arbitrary ∪ {\displaystyle \cup } {\displaystyle \cup }) Yes Yes Never
Closed Topology Yes Yes Yes No No (even arbitrary ∩ {\displaystyle \cap } {\displaystyle \cap }) No Yes Yes Never
Is necessarily true of F : {\displaystyle {\mathcal {F}}\colon } {\displaystyle {\mathcal {F}}\colon }or, is F {\displaystyle {\mathcal {F}}} {\displaystyle {\mathcal {F}}} closed under: directed downward finiteintersections finiteunions relativecomplements complementsin Ω {\displaystyle \Omega } {\displaystyle \Omega } countableintersections countableunions contains Ω {\displaystyle \Omega } {\displaystyle \Omega } contains ∅ {\displaystyle \varnothing } {\displaystyle \varnothing } Finite Intersection Property
Additionally, a semiring is a π-system where every complement B ∖ A {\displaystyle B\setminus A} {\displaystyle B\setminus A} is equal to a finite disjoint union of sets in F . {\displaystyle {\mathcal {F}}.} {\displaystyle {\mathcal {F}}.}A semialgebra is a semiring where every complement Ω ∖ A {\displaystyle \Omega \setminus A} {\displaystyle \Omega \setminus A} is equal to a finite disjoint union of sets in F . {\displaystyle {\mathcal {F}}.} {\displaystyle {\mathcal {F}}.} A , B , A 1 , A 2 , … {\displaystyle A,B,A_{1},A_{2},\ldots } {\displaystyle A,B,A_{1},A_{2},\ldots } are arbitrary elements of F {\displaystyle {\mathcal {F}}} {\displaystyle {\mathcal {F}}} and it is assumed that F ≠ ∅ . {\displaystyle {\mathcal {F}}\neq \varnothing .} {\displaystyle {\mathcal {F}}\neq \varnothing .}