Radeon HD 7000 series (original) (raw)

From Wikipedia, the free encyclopedia

Series of video cards

Not to be confused with the Radeon RX 7000 series, a newer series of GPUs developed by AMD.

AMD Radeon HD 7000 series

AMD Radeon graphics logo
Release date January 9, 2012; 12 years ago (January 9, 2012)
Codename Southern IslandsLondonTrinitySea Islands
Architecture TeraScale 2TeraScale 3GCN 1st genGCN 2nd gen
Transistors 292M 40 nm (Cedar)370M 40 nm (Caicos)716M 40 nm (Turks)1.500M 28 nm (Cape Verde)2.080M 28 nm (Bonaire)2.800M 28 nm (Pitcairn)4.313M 28 nm (Tahiti)2x 4.313M 28 nm (New Zealand)
Cards
Entry-level 73xx - 76xx
Mid-range 7750777077907850
High-end 78707870 XT79507970
Enthusiast 7990
API support
DirectX Direct3D 12.0 (feature level 11_1) (GCN version)[8]Shader Model 6.5 (GCN) or Shader Model 5.0
OpenCL OpenCL 2.1 (GCN version)
OpenGL OpenGL 4.5[1][2][3][4][5]OpenGL 4.6 (GCN only, Win 7+ and Adrenalin 18.4.1+, Linux Mesa: WIP) [6]
Vulkan Vulkan 1.2 (GCN)[7] or none (TeraScale)SPIR-V
History
Predecessor Radeon HD 6000 series
Variant Radeon HD 8000 series
Successor Radeon R5/R7/R9 200 series
Support status
Unsupported

The Radeon HD 7000 series, codenamed "Southern Islands", is a family of GPUs developed by AMD,[9] and manufactured on TSMC's 28 nm process.[10]

The primary competitor of Southern Islands was Nvidia's GeForce 600 series (also manufactured at TSMC), which shipped during Q1 2012, largely due to the immaturity of the 28 nm process.[11]

Graphics Core Next was introduced with the Radeon HD 7000 series.

Multi-monitor support

[edit]

The AMD Eyefinity-branded on-die display controllers were introduced in September 2009 in the Radeon HD 5000 series and have been present in all products since.[17]

Both Unified Video Decoder (UVD) and Video Coding Engine (VCE) are present on the dies of all products and supported by AMD Catalyst and by the free and open-source graphics device driver#ATI/AMD.

OpenCL accelerates many scientific Software Packages against CPU up to factor 10 or 100 and more. Open CL 1.0 to 1.2 are supported for all Chips with Terascale and GCN Architecture. OpenCL 2.0 is supported with GCN 2nd Gen. or 1.2 and higher.[18] For OpenCL 2.1 and 2.2 only Driver Updates are necessary with OpenCL 2.0 conformant Cards.

Vulkan 1.1 is supported for all with GCN Architecture using recent drivers on both Linux and Windows. Vulkan 1.2 is available for GCN 2nd Gen or higher with Windows Adrenalin 20.1(and newer). Vulkan 1.3 is available for GCN 1st Gen and higher with Mesa RADV on Linux.[13][14][15][16]

Die and package of a Radeon HD 7870 graphics card

The 28 nm product line is divided in three dies (Tahiti, Pitcairn, and Cape Verde), each one highly increasing shader units (32, 20 and 10 respectively). While this gives a high increase in single-precision floating point, there is however a significant departure in double-precision compute power. Tahiti has a maximum ¼ double precision throughput relative to its single precision throughput, while the other two smaller consumer dies can only achieve a 1/16 ratio.[19] While each bigger die has two additional memory controllers widening its bus by 128 bits, Pitcairn however has the same front-end dual tesselator units as Tahiti giving it similar performance to its larger brethren in DX11 tessellation benchmarks.[19]

Codenamed Tahiti, the Radeon HD 7900 series was announced on December 22, 2011. Products include the Radeon 7970 GHz Edition, Radeon HD 7970 and Radeon HD 7950.[20] The Radeon HD 7970 features 2048 usable stream cores,[A] whereas the Radeon HD 7950 has 1792 usable stream cores, as 256 out of the 2048 cores are disabled during product binning which detects defective areas of a chip. The cards are the first products to take advantage of AMD's new "Graphics Core Next" compute architecture. Both cards are equipped with 3 GB GDDR5 memory and manufactured on TSMC's 28 nm process. The Tahiti GPU is also used in the Radeon HD 7870 XT, released November 19, 2012. In this case one quarter of the stream processors are disabled, giving 1536 usable cores. Additionally, the memory interface is downgraded from 384-bit to 256-bit, along with a memory size reduction from 3 GB to 2 GB.

Codenamed Pitcairn, the Radeon HD 7800 series was formally unveiled on March 5, 2012, with retail availability from March 19, 2012. Products include the Radeon HD 7870 and Radeon HD 7850. The Radeon HD 7870 features 1280 usable stream cores, whereas the Radeon HD 7850 has 1024 usable stream cores. Both cards are equipped with 2GB GDDR5 memory (some 7850s offer 1GB) and manufactured on TSMC's 28 nm process.[22]

Codenamed Cape Verde, the Radeon HD 7700 series was released on February 15, 2012. Products include the Radeon HD 7770 GHz Edition and Radeon HD 7750. The Radeon HD 7770 GHz Edition features 640 stream cores based on the GCN architecture, whereas the Radeon HD 7750 has only 512 usable stream cores. Both cards are equipped with 1 GB GDDR5 memory and manufactured in 28 nm. On March 22, 2013, another card, Radeon HD 7790, was introduced in this series. This card is based on the Bonaire architecture, which features 896 stream cores using 2nd Generation GCN technology, an incremental update. In May 2013, AMD launched the Radeon HD 7730, based on the Cape Verde LE graphics processor. It features a 128-bit memory bus, 384 stream cores, 8 ROPs, and a core clock speed of up to 800 MHz. The HD 7730 came with GDDR5 and DDR3 variants, running on memory clock speeds of 1125 MHz and 900 MHz, respectively. Load power usage was lowered by 14.5% (47W) compared to the Radeon HD 7750 (55W).[23]

Radeon HD 7750 card using a fanless design

Model(Codename) Launch ArchitectureFab TransistorsDie Size Core Fillrate[a][b][c] Processing power[a][d](GFLOPS) Memory[e] TDP (Watts) Bus interface Release Price (USD)
Config[f] Clock[a] (MHz) Texture (GT/s) Pixel (GP/s) Single Double Size (MiB) Bus type& width Clock (MHz) Bandwidth (GB/s) Idle Max.
Radeon HD 7350(Cedar) January 2012 TeraScale 2[g]40 nm 292×10659 mm2 80:8:4 400_650_ 3.2_5.2_ 1.6_2.6_ 104 256512 DDR2DDR364-bit 400800900 6.412.814.4 6.4 19.1 PCIe 2.1 ×16 OEM
Radeon HD 7450(Caicos) January 2012 370×10667 mm2 160:8:4 625_750_ 5.0_6.0_ 2.5_3.0_ 200_240_ 5121024 DDR364-bit 533800 8.512.8 9 18 PCIe 2.1 ×16 OEM
Radeon HD 7470(Caicos) January 2012 160:8:4 625_775_ 5.0_6.2_ 2.5_3.1_ 200_248_ 5121024 DDR3GDDR564-bit 800900 12.828.8 9 27 PCIe 2.1 ×16 OEM
Radeon HD 7510(Turks LE) February 2013 716×106118 mm2 320:16:4 650 10.4 2.6 416 1024 DDR3128-bit 667 21.3 Un­known Un­known PCIe 2.1 ×16 OEM
Radeon HD 7570(Turks Pro-L) January 2012 480:24:8 650 15.6 5.2 624 5121024 DDR3GDDR5128-bit 9001000 28.864 1011 4460 PCIe 2.1 ×16 OEM
Radeon HD 7670(Turks XT) January 2012 480:24:8 800 19.2 6.4 768 5121024 GDDR5128-bit 1000 64 12 66 PCIe 2.1 ×16 OEM
Radeon HD 7730(Cape Verde LE) April 2013 GCN 1st gen28 nm 1500×106123 mm2 384:24:8 800 19.2 6.4 614.4 38.4 1024 DDR3GDDR5128-bit 1125 25.672 10 47 PCIe 3.0 ×16 $60
Radeon HD 7750(Cape Verde Pro) February 2012 512:32:16 800_900_ 25.6_28.8_ 12.8_14.4_ 819.2_921.6_ 51.2_57.6_ 102420484096 DDR3GDDR5128-bit 8001125 25.672 10 55 PCIe 3.0 ×16 $110
Radeon HD 7770GHz Edition(Cape Verde XT) February 2012 640:40:16 1000 40 16 1280 80 10242048 GDDR5128-bit 1125 72 10 80 PCIe 3.0 ×16 $160
Radeon HD 7790(Bonaire XT) March 2013 GCN 2nd gen28 nm 2080×106160 mm2 896:56:16 1000 56.0 16.0 1792 128 10242048 GDDR5128-bit 1500 96 10 85 PCIe 3.0 ×16 $150
Radeon HD 7850(Pitcairn Pro) March 2012 GCN 1st gen28 nm 2800×106212 mm2 1024:64:32 860 55.04 27.52 1761.28 110.08 10242048 GDDR5256-bit 1200 153.6 10 130 PCIe 3.0 ×16 $250
Radeon HD 7870GHz Edition(Pitcairn XT) March 2012 1280:80:32 1000 80 32 2560 160 2048 1200 153.6 10 175 PCIe 3.0 ×16 $350
Radeon HD 7870 XT(Tahiti LE) November 2012 4313×106352 mm2 1536:96:32 925_975_ 88.8 29.6 2841.6_2995.2_ 710.4_748.8_ 2048 GDDR5256-bit 1500 192.0 15 185 PCIe 3.0 ×16 $270
Radeon HD 7950(Tahiti Pro) January 2012 1792:112:32 800 89.6 25.6 2867.2 717 3072 GDDR5384-bit 1250 240 15 200 PCIe 3.0 ×16 $450
Radeon HD 7950 Boost(Tahiti Pro2) August 2012 1792:112:32 850_925_ 103.6 29.6 3046.4_3315.2_ 761.6_828.8_ 3072 GDDR5384-bit 1250 240 15 225 PCIe 3.0 ×16 $330
Radeon HD 7970(Tahiti XT) December 2011 2048:128:32 925 118.4 29.6 3788.8 947.2 30726144 GDDR5384-bit 1375 264 15 250 PCIe 3.0 ×16 $550
Radeon HD 7970GHz Edition(Tahiti XT2) June 2012 2048:128:32 1000_1050_ 128.0 32 4096_4300.8_ 1024_1075_ 30726144 GDDR5384-bit 1500 288 15 250 PCIe 3.0 ×16 $500
Radeon HD 7990(New Zealand) April 2013 2× 4313×106352 mm2 2× 2048:128:32 950_1000_ 2× 128 2× 32 7782.4_8192_ 1945.6_2048_ 2× 3072 GDDR5384-bit 1500 2× 288 15 375 PCIe 3.0 ×16 $1000
Model(Codename) Launch ArchitectureFab TransistorsDie Size Config[f] Clock[a] (MHz) Texture (GT/s) Pixel (GP/s) Single Double Size (MiB) Bus type& width Clock(MHz) Bandwidth (GB/s) Idle Max. Bus interface Release Price (USD)
Core Fillrate[a][b][c] Processing power[a][d](GFLOPS) Memory[e] TDP (Watts)
  1. ^ a b c d e f Boost values (if available) are stated below the base value in italic.
  2. ^ a b Texture fillrate is calculated as the number of Texture Mapping Units multiplied by the base (or boost) core clock speed.
  3. ^ a b Pixel fillrate is calculated as the number of Render Output Units multiplied by the base (or boost) core clock speed.
  4. ^ a b Precision performance is calculated from the base (or boost) core clock speed based on a FMA operation.
  5. ^ a b The effective data transfer rate of GDDR5 is quadruple its nominal clock, instead of double as it is with DDR memory.
  6. ^ a b Unified Shaders : Texture Mapping Units : Render Output Units
  7. ^ Lacks hardware video encoder
Model Launch Code name Architecture Fab (nm) Core Clock (MHz) Config core[a] Fillrate Shared Memory Processing power(GFLOPS) API compliance (version) TDP (W)[b] APU
Base Turbo Texture (GT/s) Pixel (GP/s) Bus width (bit) Bus type Bandwidth (GB/s) Direct3D OpenGL[c] OpenCL
Radeon HD 7310[26] June 6, 2012 Ontario TeraScale 2[d] 40 500 80:8:4 4.00 2.00 64 DDR3-1066 8.53 80 11.3(11_0) 4.5 1.2 18 E2-1200
Radeon HD 7340[26] 523 680 5.44 2.72 DDR3-1333 10.66 83.6–108.8 E2-1800
Radeon HD 7480D June 1, 2012 Scrapper TeraScale 3[d] 32 723 128:8:4 11.6 2.9 128 DDR3-1600 25.6 185 65 A4-4000, A4-5300
Radeon HD 7540D 760 192:12:4 Un­known DDR3-1866 29.9 292 A6-5400K
Radeon HD 7560D Devastator 256:16:4 389 65–100 A8-5500, A8-5600K
Radeon HD 7660D 760 800 384:24:8 16.2 2.7 584–614 A10-5700 (760 MHz), A10-5800K (800 MHz)
  1. ^ Unified Shaders : Texture Mapping Units : Render Output Units
  2. ^ TDP specified for AMD reference designs, includes CPU power consumption. Actual TDP of retail products may vary.
  3. ^ OpenGL 4.5 possible for Terascale 3 with AMD Radeon Software Crimson Beta (driver 15.30 or higher).[25]
  4. ^ a b Lacks hardware video encoder

A Radeon HD 7970M GPU on a Mobile PCI Express Module

Model(Codename) Launch Architecture(Fab) Core Fillrate Processing power(GFLOPS) Memory Bus interface TDP (W)
Config[a] Clock (MHz) Texture (GT/s) Pixel (GP/s) Size (GiB) Bus type &width (bit)[b] Memory (MHz) Bandwidth (GB/s)
Radeon HD 7430M(Seymour Pro) January 2012 TeraScale 2[c](40 nm) 160:8:4:2 600 4.8 2.4 192 1 DDR364-bit 900 14.4 PCIe 2.1 ×16 7
Radeon HD 7450M(Seymour Pro) 700700 5.6 2.8 224 1 DDR3GDDR564-bit 900800 14.425.6 7
Radeon HD 7470M(Seymour XT) 750800 66.4 3.03.2 240256 1 DDR3GDDR564-bit 900800 14.425.6 7~9
Radeon HD 7490M(Seymour XTX) 800 6.4 3.2 256 1 GDDR564-bit 950 30.4 9
Radeon HD 7510M(Thames LE) January 2012 TeraScale 2[c](40 nm) 400:20:8:5 450 9.0 3.6 360 1 DDR364-bit 800 12.8 11
Radeon HD 7530M(Thames LP) January 2012 TeraScale 2[c](40 nm) 400:24:8:5 450 9.0 3.6 360 1 DDR364-bit 900 14.4 11
Radeon HD 7550M(Thames Pro) January 2012 TeraScale 2[c](40 nm) 400:20:8:5 450550 9.011.0 3.64.4 360440 1 DDR3GDDR564-bit 900800 14.425.6 13
Radeon HD 7570M(Thames Pro) January 2012 TeraScale 2[c](40 nm) 400:20:8:5 450650 9.013.0 3.65.2 360520 1 DDR3GDDR564-bit 900800 14.425.6 13~15
Radeon HD 7590M(Thames XT) January 2012 TeraScale 2[c](40 nm) 480:24:8:6 600 14.4 4.8 576 1 GDDR564-bit 800 25.6 18
Radeon HD 7610M(Thames LE) January 2012 TeraScale 2[c](40 nm) 400:20:8:5 450 9.0 3.6 360 1 DDR3128-bit 800 25.6 20
Radeon HD 7630M(Thames LP) January 2012 TeraScale 2[c](40 nm) 480:24:8:6 450 10.8 3.6 432 1 DDR3128-bit 800 25.6 20~25
Radeon HD 7650M(Thames Pro) 450550 10.813.2 3.64.4 432528 1 DDR3128-bit 800800 25.6 20~25
Radeon HD 7670M(Thames Pro) 600 14.4 4.8 576 1 DDR3GDDR5128-bit 900 28.857.6 20~25
Radeon HD 7690M(Thames XT) 725600 17.414.4 5.84.8 696576 12 DDR3GDDR5128-bit 900900 28.857.6 20~25
Radeon HD 7690M XT(Thames XTX) 725 17.4 5.8 696 12 GDDR5128-bit 900 57.6 25
Radeon HD 7730M(Chelsea LP) April 2012 GCN 1st gen(28 nm) 512:32:16:8 575675 18.421.6 9.210.8 588.8691.2 2 GDDR3128-bit 900900 28.8 PCIe 2.1 ×16 25~28
Radeon HD 7750M(Chelsea Pro) 575 18.4 9.2 588.8 12 GDDR5128-bit 1000 64 28
Radeon HD 7770M(Chelsea XT) 675 21.6 10.8 691.2 12 GDDR5128-bit 1000 64 32
Radeon HD 7850M(Heathrow Pro) April 2012 GCN 1st gen(28 nm) 640:40:16:10 675 27 10.8 864 2 GDDR5128-bit 1000 64 PCIe 3.0 ×16 40
Radeon HD 7870M(Heathrow XT) 800 32 12.8 1024 2 GDDR5128-bit 1000 64 40–45
Radeon HD 7970M(Wimbledon XT) April 2012 GCN 1st gen(28 nm) 1280:80:32:20 850 68 27.2 2176 24 GDDR5256-bit 1200 153.6 PCIe 3.0 ×16 75
  1. ^ Unified Shaders : Texture Mapping Units : Render Output Units
  2. ^ The effective data transfer rate of GDDR5 is quadruple its nominal clock, instead of double as it is with other DDR memory.
  3. ^ a b c d e f g h Lacks hardware video encoder

Integrated (IGP) products

[edit]

Model(Codename) Launch Architecture(Fab) Core config[a] Clock rate (MHz) Fillrate Processing power(GFLOPS) Shared memory
Core (MHz) Boost (MHz) Pixel (GP/s) Texture (GT/s) Bus type& width (bit) Clock Bandwidth (GB/s)
Radeon HD 7400G(Scrapper) September 2012 TeraScale 3[b](32 nm) 192:12:4 327 424 1.31 3.92 125.57 DDR3128-bit 1333 to 2133 21.33–34.13
Radeon HD 7420G(Scrapper) June 2012 128:8:4 480 655 1.92 3.84 122.88
Radeon HD 7500G(Scrapper) May 2012 256:16:8 327 424 2.62 5.23 167.42
Radeon HD 7520G(Scrapper) June 2012 192:12:4 496 685 1.98 5.95 190.46
Radeon HD 7600G(Devastator) September 2012 384:24:8 320 424 2.56 7.68 245.76
Radeon HD 7620G(Devastator) May 2012 360 497 2.88 8.64 276.48
Radeon HD 7640G(Devastator) 256:16:8 496 685 3.97 7.94 253.95
Radeon HD 7660G(Devastator) 384:24:8 11.9 380.93
  1. ^ Unified Shaders : Texture Mapping Units : Render Output Units
  2. ^ Lacks hardware video encoder

Radeon Feature Matrix

[edit]

The following table shows features of AMD/ATI's GPUs (see also: List of AMD graphics processing units).

Name of GPU series Wonder Mach 3D Rage Rage Pro Rage 128 R100 R200 R300 R400 R500 R600 RV670 R700 Evergreen Northern Islands SouthernIslands Sea Islands Volcanic Islands Arctic Islands/Polaris Vega Navi 1x Navi 2x Navi 3x
Released 1986 1991 Apr1996 Mar1997 Aug1998 Apr2000 Aug2001 Sep2002 May2004 Oct2005 May2007 Nov2007 Jun2008 Sep2009 Oct2010 Dec2010 Jan2012 Sep2013 Jun2015 Jun 2016, Apr 2017, Aug 2019 Jun 2017, Feb 2019 Jul2019 Nov2020 Dec2022
Marketing Name Wonder Mach 3DRage RagePro Rage128 Radeon7000 Radeon8000 Radeon9000 RadeonX700/X800 RadeonX1000 RadeonHD 2000 RadeonHD 3000 RadeonHD 4000 RadeonHD 5000 RadeonHD 6000 RadeonHD 7000 Radeon200 Radeon300 Radeon400/500/600 RadeonRX Vega, Radeon VII RadeonRX 5000 RadeonRX 6000 RadeonRX 7000
AMD support Ended Current
Kind 2D 3D
Instruction set architecture Not publicly known TeraScale instruction set GCN instruction set RDNA instruction set
Microarchitecture TeraScale 1 (VLIW) TeraScale 2 (VLIW5) TeraScale 2 (VLIW5) up to 68xx TeraScale 3 (VLIW4) in 69xx [27][28] GCN 1st gen GCN 2nd gen GCN 3rd gen GCN 4th gen GCN 5th gen RDNA RDNA 2 RDNA 3
Type Fixed pipeline[a] Programmable pixel & vertex pipelines Unified shader model
Direct3D 5.0 6.0 7.0 8.1 9.011 (9_2) 9.0b11 (9_2) 9.0c11 (9_3) 10.011 (10_0) 10.111 (10_1) 11 (11_0) 11 (11_1)12 (11_1) 11 (12_0)12 (12_0) 11 (12_1)12 (12_1) 11 (12_1)12 (12_2)
Shader model 1.4 2.0+ 2.0b 3.0 4.0 4.1 5.0 5.1 5.16.5 6.7
OpenGL 1.1 1.2 1.3 2.1[b][29] 3.3 4.5[30][31][32][c] 4.6
Vulkan 1.1 1.3
OpenCL Close to Metal 1.1 (not supported by Mesa) 1.2+ (on Linux: 1.1+ (no Image support on clover, with by rustiCL) with Mesa, 1.2+ on GCN 1.Gen) 2.0+ (Adrenalin driver on Win7+)(on Linux ROCM, Mesa 1.2+ (no Image support in clover, but in rustiCL with Mesa, 2.0+ and 3.0 with AMD drivers or AMD ROCm), 5th gen: 2.2 win 10+ and Linux RocM 5.0+ 2.2+ and 3.0 windows 8.1+ and Linux ROCM 5.0+ (Mesa rustiCL 1.2+ and 3.0 (2.1+ and 2.2+ wip))[33][34][35]
HSA / ROCm Yes ?
Video decoding ASIC Avivo/UVD UVD+ UVD 2 UVD 2.2 UVD 3 UVD 4 UVD 4.2 UVD 5.0 or 6.0 UVD 6.3 UVD 7 [36][d] VCN 2.0 [36][d] VCN 3.0 [37] VCN 4.0
Video encoding ASIC VCE 1.0 VCE 2.0 VCE 3.0 or 3.1 VCE 3.4 VCE 4.0 [36][d]
Fluid Motion [e] No Yes No ?
Power saving ? PowerPlay PowerTune PowerTune & ZeroCore Power ?
TrueAudio Via dedicated DSP Via shaders
FreeSync 12
HDCP[f] ? 1.4 2.2 2.3 [38]
PlayReady[f] 3.0 No 3.0
Supported displays[g] 1–2 2 2–6 ?
Max. resolution ? 2–6 ×2560×1600 2–6 ×4096×2160 @ 30 Hz 2–6 ×5120×2880 @ 60 Hz 3 ×7680×4320 @ 60 Hz [39] 7680×4320 @ 60 Hz PowerColor 7680x4320@165 HZ
/drm/radeon[h] Yes
/drm/amdgpu[h] Optional [40] Yes
  1. ^ The Radeon 100 Series has programmable pixel shaders, but do not fully comply with DirectX 8 or Pixel Shader 1.0. See article on R100's pixel shaders.
  2. ^ R300, R400 and R500 based cards do not fully comply with OpenGL 2+ as the hardware does not support all types of non-power of two (NPOT) textures.
  3. ^ OpenGL 4+ compliance requires supporting FP64 shaders and these are emulated on some TeraScale chips using 32-bit hardware.
  4. ^ a b c The UVD and VCE were replaced by the Video Core Next (VCN) ASIC in the Raven Ridge APU implementation of Vega.
  5. ^ Video processing for video frame rate interpolation technique. In Windows it works as a DirectShow filter in your player. In Linux, there is no support on the part of drivers and / or community.
  6. ^ a b To play protected video content, it also requires card, operating system, driver, and application support. A compatible HDCP display is also needed for this. HDCP is mandatory for the output of certain audio formats, placing additional constraints on the multimedia setup.
  7. ^ More displays may be supported with native DisplayPort connections, or splitting the maximum resolution between multiple monitors with active converters.
  8. ^ a b DRM (Direct Rendering Manager) is a component of the Linux kernel. AMDgpu is the Linux kernel module. Support in this table refers to the most current version.

Graphics device drivers

[edit]

AMD's proprietary graphics device driver "Catalyst"

[[edit](/w/index.php?title=Radeon%5FHD%5F7000%5Fseries&action=edit&section=17 "Edit section: AMD's proprietary graphics device driver "Catalyst"")]

AMD Catalyst is being developed for Microsoft Windows and Linux. As of July 2014, other operating systems are not officially supported. This may be different for the AMD FirePro brand, which is based on identical hardware but features OpenGL-certified graphics device drivers.

AMD Catalyst supports all features advertised for the Radeon brand.

Free and open-source graphics device driver "Radeon"

[[edit](/w/index.php?title=Radeon%5FHD%5F7000%5Fseries&action=edit&section=18 "Edit section: Free and open-source graphics device driver "Radeon"")]

The free and open-source drivers are primarily developed on Linux and for Linux, but have been ported to other operating systems as well. Each driver is composed out of five parts:

  1. Linux kernel component DRM
  2. Linux kernel component KMS driver: basically the device driver for the display controller
  3. user-space component libDRM
  4. user-space component in Mesa 3D;
  5. a special and distinct 2D graphics device driver for X.Org Server, which if finally about to be replaced by Glamor

The free and open-source "Radeon" graphics driver supports most of the features implemented into the Radeon line of GPUs.[5]

The free and open-source "Radeon" graphics device drivers are not reverse engineered, but based on documentation released by AMD.[41]

  1. ^ Corresponding to 32 cores in "the closest reasonable mapping to the equivalent in a CPU".[21]: 60

  2. ^ "AMD Radeon Software Crimson Edition Beta". AMD. Retrieved 2018-04-20.

  3. ^ "AMD Radeon Software Crimson Edition 16.3 Release Notes". AMD. Retrieved 2018-04-20.

  4. ^ "AMDGPU-PRO Driver for Linux Release Notes". 2017. Archived from the original on 2017-01-27. Retrieved 2018-04-23.

  5. ^ "Mesamatrix". mesamatrix.net. Retrieved 2018-04-22.

  6. ^ a b "RadeonFeature". X.Org Foundation. Retrieved 2018-04-20.

  7. ^ "AMD Adrenalin 18.4.1 Graphics Driver Released (OpenGL 4.6, Vulkan 1.1.70) | Geeks3D". May 2018.

  8. ^ "AMD Open Source Driver for Vulkan". GPUOpen. Retrieved 2018-04-20.

  9. ^ "AMD Catalyst 15.7.1 Driver for Windows® Release Notes". AMD. Retrieved 2018-04-20.

  10. ^ Demerjian, Charlie (April 6, 2011). "AMD will out the 'Southern Islands' GPU architecture early". SemiAccurate. Retrieved October 1, 2013.

  11. ^ "Report: TSMC wins key 40-, 28-nm deals". EETimes. Archived from the original on August 20, 2011. Retrieved 2011-06-28.

  12. ^ Charlie Demerjian (July 19, 2011). "Southern Islands, Kepler, and Apple's A6 process puzzle outed". Retrieved December 1, 2013.

  13. ^ Advanced Micro Devices, Inc. (22 April 2018). "Conformant Products (submission 318)". The Khronos Group Inc.

  14. ^ a b Software Freedom Conservancy (5 November 2024). "Conformant Products (submission 799)". The Khronos Group Inc.

  15. ^ a b Software Freedom Conservancy (5 November 2024). "Conformant Products (submission 798)". The Khronos Group Inc.

  16. ^ a b Software Freedom Conservancy (5 November 2024). "Conformant Products (submission 797)". The Khronos Group Inc.

  17. ^ a b Software Freedom Conservancy (5 November 2024). "Conformant Products (submission 796)". The Khronos Group Inc.

  18. ^ "AMD Eyefinity: FAQ". AMD. 2011-05-17. Retrieved 2014-07-02.

  19. ^ "The Khronos Group". 15 June 2022.

  20. ^ a b "Review: AMD Radeon HD 7850 & 7870" (in French). BeHardware. March 5, 2012. Retrieved August 22, 2013.

  21. ^ "AMD Radeon HD 7000 series reviewed". Hardware.Info. Retrieved 2017-08-28.

  22. ^ Gaster, Benedict; Howes, Lee; Kaeli, David R.; Mistry, Perhaad; Schaa, Dana (2012). Heterogeneous Computing with OpenCL: Revised OpenCL 1.2 Edition. Morgan Kaufmann.

  23. ^ "AMD Radeon HD 7870 GHz Edition & Radeon HD 7850 Review: Rounding Out Southern Islands". AnandTech. Retrieved August 22, 2013.

  24. ^ Woligroski, Don (5 August 2013). "AMD Radeon HD 7730 Review: A Harbinger Of The Kaveri APU? | Tom's Hardware". Tomshardware.com. Retrieved 2022-05-13.

  25. ^ "AMD launches Radeon 7790: Meet the Xbox 720's GPU". ExtremeTech. 2013-03-22. Retrieved 2013-11-10.

  26. ^ "AMD Radeon Software Crimson Edition Beta". AMD. Retrieved 2018-04-20.

  27. ^ a b "AMD Reveals Brazos 2.0 APUs and FCH". AnandTech. Purch Group.

  28. ^ "AMD Radeon HD 6900 (AMD Cayman) series graphics cards". HWlab. hw-lab.com. December 19, 2010. Archived from the original on August 23, 2022. Retrieved August 23, 2022. New VLIW4 architecture of stream processors allowed to save area of each SIMD by 10%, while performing the same compared to previous VLIW5 architecture

  29. ^ "GPU Specs Database". TechPowerUp. Retrieved August 23, 2022.

  30. ^ "NPOT Texture (OpenGL Wiki)". Khronos Group. Retrieved February 10, 2021.

  31. ^ "AMD Radeon Software Crimson Edition Beta". AMD. Retrieved 2018-04-20.

  32. ^ "Mesamatrix". mesamatrix.net. Retrieved 2018-04-22.

  33. ^ "RadeonFeature". X.Org Foundation. Retrieved 2018-04-20.

  34. ^ "AMD Radeon RX 6800 XT Specs". TechPowerUp. Retrieved January 1, 2021.

  35. ^ "AMD Launches The Radeon PRO W7500/W7600 RDNA3 GPUs". Phoronix. 3 August 2023. Retrieved 4 September 2023.

  36. ^ "AMD Radeon Pro 5600M Grafikkarte". TopCPU.net (in German). Retrieved 4 September 2023.

  37. ^ a b c Killian, Zak (March 22, 2017). "AMD publishes patches for Vega support on Linux". Tech Report. Retrieved March 23, 2017.

  38. ^ Larabel, Michael (September 15, 2020). "AMD Radeon Navi 2 / VCN 3.0 Supports AV1 Video Decoding". Phoronix. Retrieved January 1, 2021.

  39. ^ Edmonds, Rich (February 4, 2022). "ASUS Dual RX 6600 GPU review: Rock-solid 1080p gaming with impressive thermals". Windows Central. Retrieved November 1, 2022.

  40. ^ "Radeon's next-generation Vega architecture" (PDF). Radeon Technologies Group (AMD). Archived from the original (PDF) on September 6, 2018. Retrieved June 13, 2017.

  41. ^ "AMDGPU". Retrieved December 29, 2023.

  42. ^ "AMD Developer Guideds".