Los diagramas de Feynman en física, son gráficos que representan las trayectorias de las partículas en las fases intermedias de un proceso de colisión para resolver de manera eficaz los cálculos implicados en dicho proceso, procedentes de la teoría cuántica de campos. Su autor es el físico estadounidense Richard Feynman que los introdujo por primera vez en 1948, publicándose su caracterización en un famoso artículo de 1949. También son utilizados en otras teorías para resolver problemas de muchos cuerpos como en la física del estado sólido. El problema de calcular secciones eficaces de dispersión en física de partículas se reduce a sumar sobre las amplitudes de todos los estados intermedios posibles, en lo que se conoce como expansión perturbativa. Estos estados se pueden representar por los diagramas de Feynman cuyo cálculo resulta menos complejo y más ilustrativo que el proveniente de la expresión matemática directa. Sin embargo, han de sumarse todos los términos del desarrollo perturbativo y, en ocasiones, puede no resultar convergente. Feynman mostró cómo calcular las amplitudes del diagrama usando, las así llamadas, reglas de Feynman, que se pueden derivar del lagrangiano subyacente al sistema. Cada línea interna corresponde a un factor del propagador de la partícula virtual correspondiente; cada vértice donde las líneas se reúnen da un factor derivado de un término de interacción en el lagrangiano, y las líneas entrantes y salientes determinan restricciones en la energía, el momento y el espín. Además de su valor como técnica matemática, los diagramas de Feynman proporcionan penetración física profunda a la naturaleza de las interacciones de las partículas. Las partículas obran recíprocamente en cada modo posible; de hecho, la partícula "virtual" intermediaria se puede propagar más rápidamente que la luz. La probabilidad de cada resultado entonces es obtenida sumando sobre todas tales posibilidades. Esto se liga a la formulación de la mecánica cuántica, también inventada por Feynman —véase la formulación . El uso ingenuo de tales cálculos produce a menudo diagramas con amplitudes infinitas, lo que es intolerable en una teoría física. El problema es que las auto-interacciones de las partículas han sido ignoradas erróneamente. La técnica de la renormalización, iniciada por Feynman, , y Tomonaga, compensa este efecto y elimina los términos infinitos molestos. Después de realizada la renormalización, los cálculos de diagramas de Feynman emparejan a menudo resultados experimentales con exactitud muy buena. El diagrama de Feynman y los métodos de la integral de trayectorias también se utilizan en la mecánica estadística. Murray Gell-Mann se refirió siempre a los diagramas de Feynman como diagramas de Stückelberg, por el físico suizo que ideó una notación similar. (es)