dbo:abstract
- En théorie cinétique des gaz, la loi de distribution de vitesses de Maxwell quantifie la répartition statistique des vitesses des particules dans un gaz homogène à l'équilibre thermodynamique. Les vecteurs vitesse des particules suivent une loi normale. Cette loi a été établie par James Clerk Maxwell en 1860 et confirmée ultérieurement par Ludwig Boltzmann à partir de bases physiques qui fondent la physique statistique en 1872 et 1877. Cette distribution a d'abord été définie et utilisée pour décrire vitesse des particules du gaz parfait, où les particules se déplacent librement sans interagir les unes avec les autres, à l'exception de très brèves collisions au cours desquels elles échangent de l'énergie et de la quantité de mouvement. Le terme "particule" dans ce contexte se réfère uniquement aux particules à l'état gazeux (atomes ou molécules), et le système de particules considéré est supposé avoir atteint l'équilibre thermodynamique. Les énergies de ces particules suivent ce qui est connu sous le nom de Statistique de Maxwell-Boltzmann, et la distribution statistique des vitesses est obtenue en assimilant les énergies des particules à leur énergie cinétique. Mathématiquement, la distribution de Maxwell – Boltzmann est la Loi du χ avec trois degrés de liberté (les composantes du vecteur vitesse dans l'Espace euclidien), avec un paramètre d'échelle qui mesure des vitesses en unités proportionnelles à la racine carrée de (le rapport entre la température et la masse des particules). La distribution de Maxwell-Boltzmann est un résultat de la théorie cinétique des gaz. Il fournit une explication simplifiée à de nombreuses propriétés fondamentales des gaz, dont la pression et la diffusion. La distribution de Maxwell – Boltzmann s'applique aux vitesses des particules en trois dimensions, mais elle se révèle dépendre uniquement de la norme de la vitesse des particules. Une distribution de probabilité de vitesse de particules indique les vitesses les plus probables. La théorie cinétique des gaz s'applique au gaz parfait. Pour les gaz réels, divers effets (par exemple, la présence d'interactions de van der Waals ou de tourbillons (aussi appelés vortex), peuvent rendre la distribution de vitesse différente de la loi de Maxwell – Boltzmann. Cependant, les gaz raréfiés à des températures ordinaires se comportent presque comme le gaz parfait et la loi de distribution de vitesse de Maxwell est une excellente approximation pour ces gaz. Les plasmas, qui sont des gaz ionisés de faible densité, ont souvent des distributions de particules partiellement ou entièrement maxwelliennes. (fr)