GitHub - pymatting/pymatting: A Python library for alpha matting (original) (raw)

PyMatting: A Python Library for Alpha Matting

License: MIT CI PyPI JOSS Gitter

We introduce the PyMatting package for Python which implements various methods to solve the alpha matting problem.

Lemur

Given an input image and a hand-drawn trimap (top row), alpha matting estimates the alpha channel of a foreground object which can then be composed onto a different background (bottom row).

PyMatting provides:

Getting Started

Requirements

Minimal requirements

Additional requirements for GPU support

Requirements to run the tests

Installation with PyPI

Installation from Source

git clone https://github.com/pymatting/pymatting cd pymatting pip3 install .

Example

First import will take a minute due to compilation

from pymatting import cutout

cutout( # input image path "data/lemur/lemur.png", # input trimap path "data/lemur/lemur_trimap.png", # output cutout path "lemur_cutout.png")

More advanced examples

Trimap Construction

All implemented methods rely on trimaps which roughly classify the image into foreground, background and unknown regions. Trimaps are expected to be numpy.ndarrays of type np.float64 having the same shape as the input image with only one color-channel. Trimap values of 0.0 denote pixels which are 100% background. Similarly, trimap values of 1.0 denote pixels which are 100% foreground. All other values indicate unknown pixels which will be estimated by the algorithm.

Testing

Run the tests from the main directory:

pip3 install -r requirements_tests.txt
ppytest

Currently 89% of the code is covered by tests.

Upgrade

pip3 install --upgrade pymatting python3 -c "import pymatting"

Bug Reports, Questions and Pull-Requests

Please, see our community guidelines.

Authors

See also the list of contributors who participated in this project.

Projects using PyMatting

License

This project is licensed under the MIT License - see the LICENSE.md file for details

Citing

If you found PyMatting to be useful for your work, please consider citing our paper:

@article{Germer2020,
  doi = {10.21105/joss.02481},
  url = {https://doi.org/10.21105/joss.02481},
  year = {2020},
  publisher = {The Open Journal},
  volume = {5},
  number = {54},
  pages = {2481},
  author = {Thomas Germer and Tobias Uelwer and Stefan Conrad and Stefan Harmeling},
  title = {PyMatting: A Python Library for Alpha Matting},
  journal = {Journal of Open Source Software}
}

References

[1]Anat Levin, Dani Lischinski, and Yair Weiss. A closed-form solution to natural image matting. IEEE transactions on pattern analysis and machine intelligence, 30(2):228–242, 2007.

[2]Kaiming He, Jian Sun, and Xiaoou Tang. Fast matting using large kernel matting laplacian matrices. In 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2165–2172. IEEE, 2010.

[3]Qifeng Chen, Dingzeyu Li, and Chi-Keung Tang. Knn matting. IEEE transactions on pattern analysis and machine intelligence, 35(9):2175–2188, 2013.

[4]Yuanjie Zheng and Chandra Kambhamettu. Learning based digital matting. In 2009 IEEE 12th international conference on computer vision, 889–896. IEEE, 2009.

[5]Leo Grady, Thomas Schiwietz, Shmuel Aharon, and Rüdiger Westermann. Random walks for interactive alpha-matting. In Proceedings of VIIP, volume 2005, 423–429. 2005.

[6]Eduardo S. L. Gastal and Manuel M. Oliveira. "Shared Sampling for Real-Time Alpha Matting". Computer Graphics Forum. Volume 29 (2010), Number 2, Proceedings of Eurographics 2010, pp. 575-584.

[7]Germer, T., Uelwer, T., Conrad, S., & Harmeling, S. (2020). Fast Multi-Level Foreground Estimation. arXiv preprint arXiv:2006.14970.

Lemur image by Mathias Appel from https://www.flickr.com/photos/mathiasappel/25419442300/ licensed under CC0 1.0 Universal (CC0 1.0) Public Domain License.